目前,大量煤巷设计规程数据处于休眠状态,并未给设计人员提供参考,支护设计主要依靠专家经验。为解决这一问题,将基于深度学习的长短期记忆网络(Long Short Term Memory,LSTM)算法引入煤矿巷道领域进行支护设计参数预测。收集全国各地...目前,大量煤巷设计规程数据处于休眠状态,并未给设计人员提供参考,支护设计主要依靠专家经验。为解决这一问题,将基于深度学习的长短期记忆网络(Long Short Term Memory,LSTM)算法引入煤矿巷道领域进行支护设计参数预测。收集全国各地煤矿巷道支护规程文本资料,利用LSTM算法构建煤矿巷道支护设计参数预测模型。结果表明,LSTM模型能较好地达到煤矿巷道支护设计参数预测的效果;为了更加直观地看出模型测试集的整体预测效果,随机选取测试集中的9条数据,可视化展示模型效果。最后,将模型运用在M煤矿F6204工作面巷道工程,模型生成的新方案与实际方案基本吻合,验证了模型的实用性和智能性。展开更多
文摘目前,大量煤巷设计规程数据处于休眠状态,并未给设计人员提供参考,支护设计主要依靠专家经验。为解决这一问题,将基于深度学习的长短期记忆网络(Long Short Term Memory,LSTM)算法引入煤矿巷道领域进行支护设计参数预测。收集全国各地煤矿巷道支护规程文本资料,利用LSTM算法构建煤矿巷道支护设计参数预测模型。结果表明,LSTM模型能较好地达到煤矿巷道支护设计参数预测的效果;为了更加直观地看出模型测试集的整体预测效果,随机选取测试集中的9条数据,可视化展示模型效果。最后,将模型运用在M煤矿F6204工作面巷道工程,模型生成的新方案与实际方案基本吻合,验证了模型的实用性和智能性。