期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合多特征和表情情感词典的性别对立言论识别方法
1
作者 马子晨 张顺香 +1 位作者 刘云朵 朱广丽 《数据采集与处理》 CSCD 北大核心 2024年第3期699-709,共11页
为识别相关极端言论,提出了一种融合多特征和表情情感词典的性别对立言论识别方法。首先,使用BERT(Bidirectional encoder representation from transformer)提取输入文本的字符特征,并使用Word2Vec提取输入文本中五笔、郑码以及拼音3... 为识别相关极端言论,提出了一种融合多特征和表情情感词典的性别对立言论识别方法。首先,使用BERT(Bidirectional encoder representation from transformer)提取输入文本的字符特征,并使用Word2Vec提取输入文本中五笔、郑码以及拼音3个方面的特征;然后,将这4个方面的特征进行融合,再输入到Bi-GRU(Bi-directional gated recurrent unit)网络中学习更深层次的语义信息;最后,通过全连接层加SoftMax函数计算出情感极性概率,并融合表情情感词典判别输入文本是否为性别对立言论。通过在自行收集的中文性别对立数据集上进行实验,与未加入特征和表情情感词典的方法相比,在F1值上有5.19%的提升。同时,在公开中文情感分析数据集Weibo_senti_100k上进行验证,证明了本方法的泛化性。 展开更多
关键词 性别对立 表情情感词典 多特征 BERT Bi-GRU Word2Vec
在线阅读 下载PDF
CCM-MF:基于多维度特征融合的中文文本分类模型 被引量:1
2
作者 马子晨 张顺香 +2 位作者 刘云朵 王星光 张友强 《广西科学》 CAS 北大核心 2023年第1期35-42,共8页
针对中文文本中不同维度特征所携带的语义信息具有差异性的问题,本文提出一种基于多维度特征融合的中文文本分类模型:CCM-MF(Chinese-text Classification Model Based on FusedMulti-dimensional Features)。该模型融合层次维度和空间... 针对中文文本中不同维度特征所携带的语义信息具有差异性的问题,本文提出一种基于多维度特征融合的中文文本分类模型:CCM-MF(Chinese-text Classification Model Based on FusedMulti-dimensional Features)。该模型融合层次维度和空间维度特征,以提高中文文本分类的准确率。首先,在层次维度上,使用预训练模型ERNIE(Enhanced Representation through Knowledge Integration)获取包含字、词及实体级别特征的词向量;然后,在空间维度上,将包含层次维度特征的词向量分别输入到改进后的深度金字塔卷积神经网络(Deep Pyramid Convolutional Neural Networks,DPCNN)模型及附加注意力机制的双向长短期记忆网络(Attention-Based Bidirectional Long Short-Term Memory Networks,Att-BLSTM)模型中,得到局部语义特征和全局语义特征;最后,将得到的空间维度特征分别作用于Softmax分类器,再对计算结果进行融合并输出分类结果。通过在多个公开数据集上进行实验,较现有主流的文本分类方法,本模型在准确率上有更好的表现,证明了该模型的有效性。 展开更多
关键词 中文文本分类 多维度 ERNIE DPCNN Att-BLSTM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部