Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion sou...Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion source neutral beam injection(NNBI)system is inevitable,which can obtain an acceptable neutralization efficiency(>55%).But the NNBI system is very complex and challengeable.To explore and master the key NNBI technology for future fusion reactor in China,an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology(CRAFT).The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 ke V for lasting 100 s.In the first operation of the CRAFT NNBI facility,a negative ion source with dual RF drivers was developed and tested.By using the 50 keV accelerator,the long-pulse and highcurrent extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV,7.3 A(~123 A/m^(2)),105 s and 55.0 keV,14.7 A(~248 A/m^(2)),30 s,respectively.By using the 200 keV accelerator,the megawatt-class negative hydrogen beam has also been achieved(135.9 keV,8.9 A,8 s).The whole process of the gas neutralization of negative ion beam,electric removal of residual ions,and beam transport have been demonstrated experimentally.展开更多
In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion s...In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.展开更多
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
The neutral beam injection (NBI) system was developed on the Experimental Ad- vanced Superconducting Tokamak (EAST) for plasma heating and current driving. This paper presents the brief history, design, developmen...The neutral beam injection (NBI) system was developed on the Experimental Ad- vanced Superconducting Tokamak (EAST) for plasma heating and current driving. This paper presents the brief history, design, development, and the main experimental results of the R&D of neutral beam injector on the test bed and on EAST. In particular, it will describe: (1) how the two beamlines with a total beam power of 8 MW were developed; (2) the design of the EAST-NBI system including the high power ion source, main vacuum chamber, inner components, beam diag- nostic system and sub-system; (3) the experimental results of beamline-1 on the summer campaign of EAST in 2014 and, (4) the status of beamline-2 and the future plan of EAST-NBIs.展开更多
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion source neutral beam injection(NNBI)system is inevitable,which can obtain an acceptable neutralization efficiency(>55%).But the NNBI system is very complex and challengeable.To explore and master the key NNBI technology for future fusion reactor in China,an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology(CRAFT).The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 ke V for lasting 100 s.In the first operation of the CRAFT NNBI facility,a negative ion source with dual RF drivers was developed and tested.By using the 50 keV accelerator,the long-pulse and highcurrent extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV,7.3 A(~123 A/m^(2)),105 s and 55.0 keV,14.7 A(~248 A/m^(2)),30 s,respectively.By using the 200 keV accelerator,the megawatt-class negative hydrogen beam has also been achieved(135.9 keV,8.9 A,8 s).The whole process of the gas neutralization of negative ion beam,electric removal of residual ions,and beam transport have been demonstrated experimentally.
基金supported by National Natural Science Foundation of China(No.11975261)。
文摘In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101000,Sub-Contract No.2013GB101001)National Natural Science Foundation of China(No.11405207)the International Science&Technology Cooperation Program of China(No.2014DFG61950)
文摘The neutral beam injection (NBI) system was developed on the Experimental Ad- vanced Superconducting Tokamak (EAST) for plasma heating and current driving. This paper presents the brief history, design, development, and the main experimental results of the R&D of neutral beam injector on the test bed and on EAST. In particular, it will describe: (1) how the two beamlines with a total beam power of 8 MW were developed; (2) the design of the EAST-NBI system including the high power ion source, main vacuum chamber, inner components, beam diag- nostic system and sub-system; (3) the experimental results of beamline-1 on the summer campaign of EAST in 2014 and, (4) the status of beamline-2 and the future plan of EAST-NBIs.