In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified BenjaminBona-Mah...We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified BenjaminBona-Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions, It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.展开更多
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
基金Supported by the Natural Science Foundation of Anhui Province under Grant No 01041188, and the Foundation of Classical Courses of Anhui Province.
文摘We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified BenjaminBona-Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions, It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.