期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO v8s的小麦小穗赤霉病检测研究
被引量:
11
1
作者
时雷
杨程凯
+4 位作者
雷镜楷
刘志浩
王健
席磊
熊蜀峰
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第7期280-289,共10页
为实现大田复杂背景下小麦小穗赤霉病快速准确识别,构建了包含冬小麦开花期、灌浆期和成熟期3个生育期共计640幅的小麦赤霉病图像数据集,并提出一种基于改进YOLO v8s的小麦小穗赤霉病识别方法。首先,利用全维动态卷积ODConv替换主干网...
为实现大田复杂背景下小麦小穗赤霉病快速准确识别,构建了包含冬小麦开花期、灌浆期和成熟期3个生育期共计640幅的小麦赤霉病图像数据集,并提出一种基于改进YOLO v8s的小麦小穗赤霉病识别方法。首先,利用全维动态卷积ODConv替换主干网络中的标准Conv,提高网络对目标区域特征的提取;然后,在Neck网络使用改进Efficient RepGFPN特征融合网络实现低层特征与高层语义信息的融合,使模型能够提取更丰富的特征信息;最后,采用EIoU损失函数替换CIoU损失函数,加快模型收敛速度,进一步提高模型准确率,实现对小麦小穗赤霉病的快速、准确识别。在自建的数据集上进行模型验证,结果表明,改进模型(OCE-YOLO v8s)对小麦小穗赤霉病的检测精度达到98.3%,相比原模型提高2个百分点;与Faster R-CNN、CenterNet、YOLO v5s、YOLO v6s、YOLO v7模型相比分别提高36、25.7、2.1、2.6、3.9个百分点。提出的OCE-YOLO v8s模型能有效实现小麦小穗赤霉病精确检测,可为大田环境下农作物病虫害实时监测提供参考。
展开更多
关键词
小麦赤霉病
目标检测
YOLO
v8
全维动态卷积
Neck网络
EIoU
在线阅读
下载PDF
职称材料
基于改进FasterNet的轻量化小麦生育期识别模型
被引量:
2
2
作者
时雷
雷镜楷
+4 位作者
王健
杨程凯
刘志浩
席磊
熊蜀峰
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第5期226-234,共9页
针对现阶段小麦生育期信息获取需依靠人工观测,效率低、主观性强等问题,本文构建包含冬小麦越冬期、返青期、拔节期和抽穗期4个生育期共计4599幅小麦图像数据集,并提出一种基于FasterNet的轻量化网络模型FSST(Fast shuffle swin transfo...
针对现阶段小麦生育期信息获取需依靠人工观测,效率低、主观性强等问题,本文构建包含冬小麦越冬期、返青期、拔节期和抽穗期4个生育期共计4599幅小麦图像数据集,并提出一种基于FasterNet的轻量化网络模型FSST(Fast shuffle swin transformer),开展4个关键生育期的智能识别。在FasterNet部分卷积的基础上引入Channel Shuffle机制,以提升模型计算速度。引入Swin Transformer模块来实现特征融合和自注意力机制,用来提升小麦关键生育期识别准确率。调整整个模型结构,进一步降低网络复杂度,并在训练中引入Lion优化器,加快网络模型收敛速度。在自建的数据集上进行模型验证,结果表明,FSST模型参数量仅为1.22×10^(7),平均识别准确率、F1值和浮点运算量分别为97.22%、78.54%和3.9×10^(8),与FasterNet、GhostNet、ShuffleNetV2和MobileNetV34种模型相比,FSST模型识别精度更高,运算速度更快,并且识别时间分别减少84.04%、73.74%、72.22%和77.01%。提出的FSST模型能够较好地进行小麦关键生育期识别,并且具有识别快速精准和轻量化的特点,可以为大田作物生长实时监测提供信息技术支持。
展开更多
关键词
小麦
生育期识别
FasterNet
轻量化
Lion优化器
在线阅读
下载PDF
职称材料
题名
基于改进YOLO v8s的小麦小穗赤霉病检测研究
被引量:
11
1
作者
时雷
杨程凯
雷镜楷
刘志浩
王健
席磊
熊蜀峰
机构
河南农业大学信息与管理科学学院
河南粮食作物协同创新中心
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第7期280-289,共10页
基金
国家自然科学基金项目(31501225)
河南省科技研发计划联合基金项目(222301420113)
+1 种基金
河南省自然科学基金项目(232300420186)
河南省科技攻关项目(242102111193)。
文摘
为实现大田复杂背景下小麦小穗赤霉病快速准确识别,构建了包含冬小麦开花期、灌浆期和成熟期3个生育期共计640幅的小麦赤霉病图像数据集,并提出一种基于改进YOLO v8s的小麦小穗赤霉病识别方法。首先,利用全维动态卷积ODConv替换主干网络中的标准Conv,提高网络对目标区域特征的提取;然后,在Neck网络使用改进Efficient RepGFPN特征融合网络实现低层特征与高层语义信息的融合,使模型能够提取更丰富的特征信息;最后,采用EIoU损失函数替换CIoU损失函数,加快模型收敛速度,进一步提高模型准确率,实现对小麦小穗赤霉病的快速、准确识别。在自建的数据集上进行模型验证,结果表明,改进模型(OCE-YOLO v8s)对小麦小穗赤霉病的检测精度达到98.3%,相比原模型提高2个百分点;与Faster R-CNN、CenterNet、YOLO v5s、YOLO v6s、YOLO v7模型相比分别提高36、25.7、2.1、2.6、3.9个百分点。提出的OCE-YOLO v8s模型能有效实现小麦小穗赤霉病精确检测,可为大田环境下农作物病虫害实时监测提供参考。
关键词
小麦赤霉病
目标检测
YOLO
v8
全维动态卷积
Neck网络
EIoU
Keywords
fusarium head blight
object detection
YOLO v8
ODConv
Neck network
EloU
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于改进FasterNet的轻量化小麦生育期识别模型
被引量:
2
2
作者
时雷
雷镜楷
王健
杨程凯
刘志浩
席磊
熊蜀峰
机构
河南农业大学信息与管理科学学院
河南粮食作物协同创新中心
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第5期226-234,共9页
基金
国家自然科学基金项目(31501225)
河南省科技研发计划联合基金(优势学科培育类)项目(222301420113)
河南省自然科学基金项目(222300420463、232300420186)。
文摘
针对现阶段小麦生育期信息获取需依靠人工观测,效率低、主观性强等问题,本文构建包含冬小麦越冬期、返青期、拔节期和抽穗期4个生育期共计4599幅小麦图像数据集,并提出一种基于FasterNet的轻量化网络模型FSST(Fast shuffle swin transformer),开展4个关键生育期的智能识别。在FasterNet部分卷积的基础上引入Channel Shuffle机制,以提升模型计算速度。引入Swin Transformer模块来实现特征融合和自注意力机制,用来提升小麦关键生育期识别准确率。调整整个模型结构,进一步降低网络复杂度,并在训练中引入Lion优化器,加快网络模型收敛速度。在自建的数据集上进行模型验证,结果表明,FSST模型参数量仅为1.22×10^(7),平均识别准确率、F1值和浮点运算量分别为97.22%、78.54%和3.9×10^(8),与FasterNet、GhostNet、ShuffleNetV2和MobileNetV34种模型相比,FSST模型识别精度更高,运算速度更快,并且识别时间分别减少84.04%、73.74%、72.22%和77.01%。提出的FSST模型能够较好地进行小麦关键生育期识别,并且具有识别快速精准和轻量化的特点,可以为大田作物生长实时监测提供信息技术支持。
关键词
小麦
生育期识别
FasterNet
轻量化
Lion优化器
Keywords
wheat
growth stage identification
FasterNet
lightweight
Lion optimizer
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO v8s的小麦小穗赤霉病检测研究
时雷
杨程凯
雷镜楷
刘志浩
王健
席磊
熊蜀峰
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
11
在线阅读
下载PDF
职称材料
2
基于改进FasterNet的轻量化小麦生育期识别模型
时雷
雷镜楷
王健
杨程凯
刘志浩
席磊
熊蜀峰
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部