The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analy...The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analysis of the equatorial thermal shield was performed using the ANSYS code, because electromagnetic load was one of the main loads. The 40 sector finite element model was established including the vacuum vessel, equatorial thermal shield, and superconducting magnets. The main purpose of this analysis was to investigate the eddy current and electromagnetic force in the equatorial thermal shield during plasma disruption. Stress analysis was implemented under the electromagnetic load. The results show that the equatorial thermal shield can accommodate the calculated electromagnetic loads.展开更多
Thermal analysis of the equatorial thermal shield for ITER is conducted in order to confirm that the cooling tube design was reasonable under both the plasma operational and the baking operational conditions. The stru...Thermal analysis of the equatorial thermal shield for ITER is conducted in order to confirm that the cooling tube design was reasonable under both the plasma operational and the baking operational conditions. The structural performance was analyzed by means of the finite element software ANSYS. A comparison of the results with design requirements shows that the results of the simulation are within allowable design requirements, which indicates the feasibility and reliability of the equatorial thermal shield structure.展开更多
An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force un...An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible.展开更多
The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China F...The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China Fusion Engineering Test Reactor(CFETR)ramp-up discharge is predicted with the tokamak simulation code(TSC).The main plasma parameters,the plasma configuration evolution and coil current evolution are given out.At the same time,the volt-second consumption during CFETR ramp-up is analyzed for different plasma shaping times and different plasma current ramp rates dIP/dt with/without assisted heating.The results show that the earlier shaping time and the faster plasma current ramp rate with auxiliary heating will enable the volt-second to save 5%-10%.At the same time,the system ability to provide the volt-second is probably 470 V·s.These simulations will give some reference to engineering design for CFETR to some degree.展开更多
Beryllium (Be) window is a key component of the ITER radial X-ray camera (RXC). The Be window presented in this paper has a mechanical clamping structure, the thickness of the Be foil is 80 μm, and the X-ray thre...Beryllium (Be) window is a key component of the ITER radial X-ray camera (RXC). The Be window presented in this paper has a mechanical clamping structure, the thickness of the Be foil is 80 μm, and the X-ray threshold of the 80 μm Be foil is 1.24 keV. A honeycomb support is designed and applied to strengthen the Be foil to prevent it from breakage when it is exposed to 1 atm perssure. Based on analysis results, the hole diameter of the support is chosen as 4 mm. A metal seal is used to isolate the vacuum on two sides of the Be window, the hollow metal sealing ring ensures the He leakage rate of the Be window being lower than 6× 10^-1 Pa.m^3.s^-1. Baking (240 ℃, 2 h) and vibration(3.3 Hz, 2 h) tests are carried out and the feasibility of the Be window's sealant in these situations is tested. The Be window has good stability that can save maintenance cost as well as enhancing the safety of the RXC.展开更多
基金supported by the International Thermonuclear Experimental Reactor (ITER) Specific Plan of China(No.2009GB101004)
文摘The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analysis of the equatorial thermal shield was performed using the ANSYS code, because electromagnetic load was one of the main loads. The 40 sector finite element model was established including the vacuum vessel, equatorial thermal shield, and superconducting magnets. The main purpose of this analysis was to investigate the eddy current and electromagnetic force in the equatorial thermal shield during plasma disruption. Stress analysis was implemented under the electromagnetic load. The results show that the equatorial thermal shield can accommodate the calculated electromagnetic loads.
基金supported by International Thermonuclear Experimental Reactor(ITER)Specific Plan(2009GB101004)
文摘Thermal analysis of the equatorial thermal shield for ITER is conducted in order to confirm that the cooling tube design was reasonable under both the plasma operational and the baking operational conditions. The structural performance was analyzed by means of the finite element software ANSYS. A comparison of the results with design requirements shows that the results of the simulation are within allowable design requirements, which indicates the feasibility and reliability of the equatorial thermal shield structure.
文摘An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0300500 and 2017YFE0300501)the National Natural Science Foundation of China(Grant Nos.11875290 and 11875253)the Fundamental Research Funds for the Central Universities of China(Grant No.WK3420000004).
文摘The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China Fusion Engineering Test Reactor(CFETR)ramp-up discharge is predicted with the tokamak simulation code(TSC).The main plasma parameters,the plasma configuration evolution and coil current evolution are given out.At the same time,the volt-second consumption during CFETR ramp-up is analyzed for different plasma shaping times and different plasma current ramp rates dIP/dt with/without assisted heating.The results show that the earlier shaping time and the faster plasma current ramp rate with auxiliary heating will enable the volt-second to save 5%-10%.At the same time,the system ability to provide the volt-second is probably 470 V·s.These simulations will give some reference to engineering design for CFETR to some degree.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2008GB109003)
文摘Beryllium (Be) window is a key component of the ITER radial X-ray camera (RXC). The Be window presented in this paper has a mechanical clamping structure, the thickness of the Be foil is 80 μm, and the X-ray threshold of the 80 μm Be foil is 1.24 keV. A honeycomb support is designed and applied to strengthen the Be foil to prevent it from breakage when it is exposed to 1 atm perssure. Based on analysis results, the hole diameter of the support is chosen as 4 mm. A metal seal is used to isolate the vacuum on two sides of the Be window, the hollow metal sealing ring ensures the He leakage rate of the Be window being lower than 6× 10^-1 Pa.m^3.s^-1. Baking (240 ℃, 2 h) and vibration(3.3 Hz, 2 h) tests are carried out and the feasibility of the Be window's sealant in these situations is tested. The Be window has good stability that can save maintenance cost as well as enhancing the safety of the RXC.