期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于争议度的Boosting集成网络样本权值调整算法 被引量:2
1
作者 高敬阳 陈程立诏 朱群雄 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期4355-4360,共6页
神经网络集成AdaBoost算法权值调整策略对于分类正确或分类错误的样本采用统一的权值调整幅度,随着迭代次数的增加,统一的权值调整幅度将导致困难样本权重的过分积累,针对这一问题,提出基于争议度的权值调整策略,并采用的标准机器学习... 神经网络集成AdaBoost算法权值调整策略对于分类正确或分类错误的样本采用统一的权值调整幅度,随着迭代次数的增加,统一的权值调整幅度将导致困难样本权重的过分积累,针对这一问题,提出基于争议度的权值调整策略,并采用的标准机器学习数据库UCI进行仿真实验。实验结果表明:该策略能够在样本权值修正阶段对各训练样本权值进行有区别的修改,即将多次连续分类错误的样本的权值提高幅度进行抑制,在一定程度上避免了困难样本权值过大而导致集成网络泛化性能下降,从而使得各个体分类器在不损失差异度的前提下获得理想的精度,提升集成网络的泛化性能,并具有良好的稳定性。 展开更多
关键词 神经网络集成 差异度 精度 争议度
在线阅读 下载PDF
一种逆向样本分布的Boosting类新算法
2
作者 高敬阳 陈程立诏 朱群雄 《化工学报》 EI CAS CSCD 北大核心 2011年第8期2287-2291,共5页
对IB(Inverse Boosting)神经网络集成算法进行了研究,提出了IB算法的改进算法IB+算法。改进算法继承了IB算法的逆向样本分布调整策略,并在训练的过程中将部分已训练好的个体子网进行中间层网络集成,利用该中间层集成网络生成新的训练样... 对IB(Inverse Boosting)神经网络集成算法进行了研究,提出了IB算法的改进算法IB+算法。改进算法继承了IB算法的逆向样本分布调整策略,并在训练的过程中将部分已训练好的个体子网进行中间层网络集成,利用该中间层集成网络生成新的训练样本分布。实验结果表明,对于逆向权值分布的Boosting类算法,个体子网之间的关联度对网络集成后的泛化性能影响很小,减小个体网络的泛化误差将使集成后的泛化性能提高。 展开更多
关键词 网络集成算法 逆向样本权值分布 中间层网络集成
在线阅读 下载PDF
物体显著性排名感知网络用于高效图像检索 被引量:2
3
作者 李林峰 陈程立诏 王恒森 《计算机应用研究》 CSCD 北大核心 2023年第10期3186-3193,3200,共9页
针对目前图像检索领域主要依靠语义相似性检索图片而忽略了场景中物体重要性关系问题,提出了一种基于场景感知的物体显著性排名算法SASR,使图像检索更关注场景中物体的相互关系。SASR分为两个阶段,在第一阶段,提出了基于视点数据的“组... 针对目前图像检索领域主要依靠语义相似性检索图片而忽略了场景中物体重要性关系问题,提出了一种基于场景感知的物体显著性排名算法SASR,使图像检索更关注场景中物体的相互关系。SASR分为两个阶段,在第一阶段,提出了基于视点数据的“组合阈值”物体级显著性排名真值标签标注方法,该方法简化了排名标签的标注;在第二阶段,提出了基于图卷积网络的物体级显著性排序网络,该网络解决了多个在物体级排序问题中存在的特异性难点。该算法改善了目前显著性排名标签生成方式并进行了大量对比实验,在现有SALICON数据集上的实验结果表明,其提升了显著性排名的性能,在NUS-WIDE数据集上的实验结果表明在该算法的支撑下,图像检索性能平均提升了2%,证明了其有效性。 展开更多
关键词 显著性排名 场景感知 图卷积网络 图像检索
在线阅读 下载PDF
基于深度质量感知和分层特征引导的RGB⁃D显著性检测 被引量:1
4
作者 宋梦柯 郑元超 陈程立诏 《计算机工程》 CAS CSCD 北大核心 2023年第5期255-261,268,共8页
现有基于融合的RGB-D显著性物体检测方法在对跨模态特征进行融合时忽视了RGB和深度图两模态特征的差异性,跨模态特征融合不均衡的问题使得模型不能充分利用跨模态互补特征,而低质量深度图也会对模型性能带来损害。提出一种基于深度质量... 现有基于融合的RGB-D显著性物体检测方法在对跨模态特征进行融合时忽视了RGB和深度图两模态特征的差异性,跨模态特征融合不均衡的问题使得模型不能充分利用跨模态互补特征,而低质量深度图也会对模型性能带来损害。提出一种基于深度质量感知和分层特征引导的RGB-D显著性物体检测算法。算法分为两个阶段:深度质量感知阶段和分层特征引导阶段。在第一阶段,利用深度质量感知从现有的主流RGB-D显著性物体检测训练数据集中挖掘高质量深度图,对训练集进行增强,提升低质量深度图的质量,减少噪声数据对模型性能的损害;在第二阶段,利用特征引导网络对RGB图和深度图进行分层自适应权重动态融合,在有效增加融合效率的同时增强跨模态融合的感知能力。在基准数据集NJUD、NLPR、SSD、STEREO和SIP上的实验结果表明,相比于SSF、CDNet、D3Net、DASNet等方法,该算法能够大幅提升深度图质量,其中在NLPR数据集上F-Measure值为0.934,MAE仅为0.020,综合性能优于其他相关SOTA方法,证明了先挖掘高质量深度图再进行跨模态自适应动态融合算法的有效性。 展开更多
关键词 深度质量感知 特征引导 跨模态融合 分层融合 RGB-D显著性检测
在线阅读 下载PDF
基于多流网络一致性的视频显著性检测
5
作者 宋佳 陈程立诏 《计算机工程》 CAS CSCD 北大核心 2022年第2期215-223,共9页
现有的视频显著性检测算法通常采用双流结构提取视频的时空线索,其中运动信息作为双流结构的一个分支,在显著物体发生剧烈或慢速移动时存在运动估计准确率低的问题,并且不合理的训练数据或方案使得权重偏向单个分支结构。提出一种基于... 现有的视频显著性检测算法通常采用双流结构提取视频的时空线索,其中运动信息作为双流结构的一个分支,在显著物体发生剧烈或慢速移动时存在运动估计准确率低的问题,并且不合理的训练数据或方案使得权重偏向单个分支结构。提出一种基于多流网络一致性的视频显著性检测算法MSNC。设计并使用一种新的三重网络结构提取预选目标区域的颜色信息、时序信息和先验特征,通过先验特征补偿运动流的缺陷,并提高运动线索的利用率。采用多流一致性融合模型优化三流分支,得到不同特征的最佳融合方案。同时通过循环训练策略平衡三重网络的权重,以避免网络过度拟合单流分支,从而有效地提高运动估计和定位的准确率。在Davis数据集上的实验结果表明,相比PCSA、SSAV、MGA等算法,该算法的鲁棒性更优,其maxF和S-Measure值分别达到0.893和0.912,MAE仅为0.021。 展开更多
关键词 视频显著性检测 运动信息 先验信息 多流一致性融合 通道注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部