文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。
文摘桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI)存在的不足,需人工参与稳定图中模态的辨识,提出了将基于密度的聚类算法(density-based spatial clustering of application with noise,DBSCAN)嵌入到该识别算法中,以提高模态参数识别的效率。首先简单介绍了CDSI识别算法和DBSCAN聚类的相关原理及定义,其次详细介绍了如何将DBSCAN聚类算法有效地嵌入到CDSI算法中,以实现对稳定图中模态的智能化辨识;最后以某大型斜拉桥为识别对象,并将识别结果与MIDAS有限元软件所得结果作对比,结果表明,所提改进CDSI识别算法能够精确地识别出桥梁结构的固有频率值,且所得模态振型图与理论振型图具有很好的相似性。