针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如...针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如相位、幅度、时间、功率谱密度等信号特征,结合Transformer网络进一步提取不同IFF辐射源个体特征中如前后关联特性的细微特征并最终实现SEI-IFF。试验结果表明,所提方法针对20个目标搭载的IFF辐射源个体的平均识别正确率达95.3%,可较准确地完成SEI-IFF,有助于提升战场SEI-IFF效率。展开更多
针对实际场景中辐射源数据稀缺造成的小样本问题,提出了一种基于自监督和双流融合的小样本雷达辐射源识别方法。首先利用高斯分布噪声、莱斯多径衰落、设计时钟偏移信号等减损方法,基于有限数量的真实样本构建类均衡辐射源信号样本集。...针对实际场景中辐射源数据稀缺造成的小样本问题,提出了一种基于自监督和双流融合的小样本雷达辐射源识别方法。首先利用高斯分布噪声、莱斯多径衰落、设计时钟偏移信号等减损方法,基于有限数量的真实样本构建类均衡辐射源信号样本集。基于增强数据集,提出一种信号时间序列与时频图的双流特征融合模型。采用对比学习方法构建双流特征融合模型的自监督上游任务,以提升在有限标签数据情况下信号多域特征的表征能力与泛化能力。实验结果证明,该方法在小样本条件下能够有效地实现较好的辐射源类型识别能力,在目标域每个类别100个样本限制下,识别精度达到97.1%,与传统一维特征方法和基于长短期记忆(Long Short Term Memory,LSTM)的方法相比均有较大提升。展开更多
文摘针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如相位、幅度、时间、功率谱密度等信号特征,结合Transformer网络进一步提取不同IFF辐射源个体特征中如前后关联特性的细微特征并最终实现SEI-IFF。试验结果表明,所提方法针对20个目标搭载的IFF辐射源个体的平均识别正确率达95.3%,可较准确地完成SEI-IFF,有助于提升战场SEI-IFF效率。
文摘针对实际场景中辐射源数据稀缺造成的小样本问题,提出了一种基于自监督和双流融合的小样本雷达辐射源识别方法。首先利用高斯分布噪声、莱斯多径衰落、设计时钟偏移信号等减损方法,基于有限数量的真实样本构建类均衡辐射源信号样本集。基于增强数据集,提出一种信号时间序列与时频图的双流特征融合模型。采用对比学习方法构建双流特征融合模型的自监督上游任务,以提升在有限标签数据情况下信号多域特征的表征能力与泛化能力。实验结果证明,该方法在小样本条件下能够有效地实现较好的辐射源类型识别能力,在目标域每个类别100个样本限制下,识别精度达到97.1%,与传统一维特征方法和基于长短期记忆(Long Short Term Memory,LSTM)的方法相比均有较大提升。