An elliptical Gaussian wave formalism model of a charged-particle beam is proposed by analogy with an elliptical Gaussian light beam. In the paraxial approximation, the charged-particle beam can be described as a whol...An elliptical Gaussian wave formalism model of a charged-particle beam is proposed by analogy with an elliptical Gaussian light beam. In the paraxial approximation, the charged-particle beam can be described as a whole by a complex radius of curvature in the real space domains. Therefore, the propagation and transform of charged-particle beam passing through a first-order optical system is represented by the ABCD-like law. As an example of the application of this model, the relation between the beam waist and the minimum beam spot at a fixed target is discussed. The result, well matches that from conventional phase space model, and proves that the Gaussian wave formalism model is highly effective and reasonable.展开更多
Multi-species charged-particles interacting with each other by a competing short-range attraction and long-range repulsion potential confined in a quadratic trap are studied with molecular dynamics simulations. It is ...Multi-species charged-particles interacting with each other by a competing short-range attraction and long-range repulsion potential confined in a quadratic trap are studied with molecular dynamics simulations. It is found that particles with similar mass-to-charge ratio tend to populate a common shell, whose location depends on the particle mass-to-charge ratio, and that the greater the latter is, the closer the particles to the centre of the trap are. This rule for the ground-state configuration is independent of the total particle and species numbers in the system.展开更多
文摘An elliptical Gaussian wave formalism model of a charged-particle beam is proposed by analogy with an elliptical Gaussian light beam. In the paraxial approximation, the charged-particle beam can be described as a whole by a complex radius of curvature in the real space domains. Therefore, the propagation and transform of charged-particle beam passing through a first-order optical system is represented by the ABCD-like law. As an example of the application of this model, the relation between the beam waist and the minimum beam spot at a fixed target is discussed. The result, well matches that from conventional phase space model, and proves that the Gaussian wave formalism model is highly effective and reasonable.
文摘Multi-species charged-particles interacting with each other by a competing short-range attraction and long-range repulsion potential confined in a quadratic trap are studied with molecular dynamics simulations. It is found that particles with similar mass-to-charge ratio tend to populate a common shell, whose location depends on the particle mass-to-charge ratio, and that the greater the latter is, the closer the particles to the centre of the trap are. This rule for the ground-state configuration is independent of the total particle and species numbers in the system.