设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么...设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么对4/3<P<2及r>P。展开更多
文摘设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么对4/3<P<2及r>P。