针对间隙非线性机翼颤振系统的亚临界问题,引入了非线性能量阱(nonlinear energy sink,NES)技术来提高系统发生极限环振荡的临界速度。建立了具有NES控制的间隙非线性机翼颤振系统动力学模型,并分析了质量比、频率比、阻尼比、相对位置...针对间隙非线性机翼颤振系统的亚临界问题,引入了非线性能量阱(nonlinear energy sink,NES)技术来提高系统发生极限环振荡的临界速度。建立了具有NES控制的间隙非线性机翼颤振系统动力学模型,并分析了质量比、频率比、阻尼比、相对位置等NES参数对颤振系统极限环振荡的抑制效果,以及NES参数对颤振系统极限环振荡临界速度的影响规律。结果表明,阻尼比越大,可以在越小的自振频率比情况下使系统进入稳定区,但需要更苛刻的NES位置要求,即越靠近机翼前缘;而阻尼比越小,则使颤振系统极限环振荡响应进入稳定区所需的NES质量越小。在NES位置靠近机翼前缘时,增大自振频率比会使极限环振荡抑制效果有明显的提升,而增大质量比可以显著提高极限环振荡的抑制效果和临界速度。此外,NES的阻尼比越小,其颤振系统的极限环振荡抑制效果越好。展开更多
A new modified homotopy perturbation method is presented for strongly non-linear oscillation by coupling the homotopy perturbation method and the modified Lindstedt-Poincare method.The advantage of this method is that...A new modified homotopy perturbation method is presented for strongly non-linear oscillation by coupling the homotopy perturbation method and the modified Lindstedt-Poincare method.The advantage of this method is that it does not need a small parameter in the physical system as in He's homotopy perturbation method,and the accuracy is greatly improved.Some examples are tested,and the obtained results show that the current method is very effective and convenient for solving strongly nonlinear oscillators.展开更多
文摘针对间隙非线性机翼颤振系统的亚临界问题,引入了非线性能量阱(nonlinear energy sink,NES)技术来提高系统发生极限环振荡的临界速度。建立了具有NES控制的间隙非线性机翼颤振系统动力学模型,并分析了质量比、频率比、阻尼比、相对位置等NES参数对颤振系统极限环振荡的抑制效果,以及NES参数对颤振系统极限环振荡临界速度的影响规律。结果表明,阻尼比越大,可以在越小的自振频率比情况下使系统进入稳定区,但需要更苛刻的NES位置要求,即越靠近机翼前缘;而阻尼比越小,则使颤振系统极限环振荡响应进入稳定区所需的NES质量越小。在NES位置靠近机翼前缘时,增大自振频率比会使极限环振荡抑制效果有明显的提升,而增大质量比可以显著提高极限环振荡的抑制效果和临界速度。此外,NES的阻尼比越小,其颤振系统的极限环振荡抑制效果越好。
基金Supported by the National Natural Science Foundation of China under Grant No 11102229.
文摘A new modified homotopy perturbation method is presented for strongly non-linear oscillation by coupling the homotopy perturbation method and the modified Lindstedt-Poincare method.The advantage of this method is that it does not need a small parameter in the physical system as in He's homotopy perturbation method,and the accuracy is greatly improved.Some examples are tested,and the obtained results show that the current method is very effective and convenient for solving strongly nonlinear oscillators.