The forming of elliptic motions on the modal conversion ultrasonic motors (MCUMs) is discussed. The principles of the modal conversion are investigated based on the coupling with the stator and the rotor, and using ...The forming of elliptic motions on the modal conversion ultrasonic motors (MCUMs) is discussed. The principles of the modal conversion are investigated based on the coupling with the stator and the rotor, and using an independent coupler. The elliptical locus observed on the longitudinal-torslonal vibration converter with oblique slits is analyzed by using vibration theory. A method for the modal conversion is proposed by using the local mode of a substructure On a main structure. The method can be used to design the modal conversion type ultrasonic motors.展开更多
A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke...A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke and reversible controlled motion in two directions. The wheel-shape linear ultrasonic motor applied in the stage utilizes two fourth-bending modes of non-uniform beam in orthogonal directions. Quick response, no backlash, high resolution, power-off self-braking, and long stroke are the attractive characteristics of the linear positioning stage. Experimental results show that z and y-direction tables can reach the destination without overshoot and the error is less than 2μm by using two linear encoders with a resolution of 1 μm. In the open-loop mode, the positioning stage achieves 1μm resolution at 0. 25 ms driving time.展开更多
How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact...How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact interface of HLUSM is one of the key issues.Under the action of ultrasonic vibration and impact,the friction behavior on contact interface is very complex due to micro-amplitude and high frequency.Moreover,it is difficult to observe and test it.Focusing on the frictional behavior on the interface of HLUSM,a new method,through testing the vibration of the driving tips(scanning vibrometer PSV-400-3D)and the motion of the slider(displacement sensor LK-G30),respectively,is proposed.Then,take the HLUSM as an example,theoretical analyses and experiments are carried out.Theoretical analysis shows that the average speed of the slider should be 600 mm/s when there is no slippage between the stator and slider during the contact process.Experimental results show that the average speed of the slider is about 390mm/s.At the same time,the tangential vibration speed of the driving tip of HLUSM is larger than 600 mm/s.Therefore,there must be slippage between the stator and slider of HLUSM.Further experimental results show that the maximum efficiency is less than 10%.The slippage on the contact interface should be the main reason for the low efficiency of HLUSM.展开更多
It is difficult for the traditional pan-tilt-zoom(PTZ)system driven by electromagnetic motor to meet the growing demand for video surveillance system.The key challenge is high positioning accuracy,high dynamic perform...It is difficult for the traditional pan-tilt-zoom(PTZ)system driven by electromagnetic motor to meet the growing demand for video surveillance system.The key challenge is high positioning accuracy,high dynamic performance and miniaturization of the PTZ system.Here a PTZ system driven by two degree-of-freedom obeliskshaped ultrasonic motor with single stator is presented,and its intelligent control algorithm is studied.The structure and driving mechanism of the presented PTZ system are analyzed by both simulation and experiment.To solve the complex nonlinear factors,e.g.time-variation,dead zone,the fuzzy PID control algorithm and the variable gain cross-coupled control strategy are combined to improve the control performance.The results show that the proposed algorithm has faster response,higher precision than traditional control algorithm,and it also has a good robustness to prevent the effect of interference.展开更多
基金Supported by the National Natural Science Foundation of China(10874090,50775109)the Jiangsu Provincial High-Tech Project of China(BG2006005)~~
文摘The forming of elliptic motions on the modal conversion ultrasonic motors (MCUMs) is discussed. The principles of the modal conversion are investigated based on the coupling with the stator and the rotor, and using an independent coupler. The elliptical locus observed on the longitudinal-torslonal vibration converter with oblique slits is analyzed by using vibration theory. A method for the modal conversion is proposed by using the local mode of a substructure On a main structure. The method can be used to design the modal conversion type ultrasonic motors.
基金the National Natural Science Foundation of China (50735002)~~
文摘A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke and reversible controlled motion in two directions. The wheel-shape linear ultrasonic motor applied in the stage utilizes two fourth-bending modes of non-uniform beam in orthogonal directions. Quick response, no backlash, high resolution, power-off self-braking, and long stroke are the attractive characteristics of the linear positioning stage. Experimental results show that z and y-direction tables can reach the destination without overshoot and the error is less than 2μm by using two linear encoders with a resolution of 1 μm. In the open-loop mode, the positioning stage achieves 1μm resolution at 0. 25 ms driving time.
基金supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Foundation of China (Nos.51408311,51375225)
文摘How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact interface of HLUSM is one of the key issues.Under the action of ultrasonic vibration and impact,the friction behavior on contact interface is very complex due to micro-amplitude and high frequency.Moreover,it is difficult to observe and test it.Focusing on the frictional behavior on the interface of HLUSM,a new method,through testing the vibration of the driving tips(scanning vibrometer PSV-400-3D)and the motion of the slider(displacement sensor LK-G30),respectively,is proposed.Then,take the HLUSM as an example,theoretical analyses and experiments are carried out.Theoretical analysis shows that the average speed of the slider should be 600 mm/s when there is no slippage between the stator and slider during the contact process.Experimental results show that the average speed of the slider is about 390mm/s.At the same time,the tangential vibration speed of the driving tip of HLUSM is larger than 600 mm/s.Therefore,there must be slippage between the stator and slider of HLUSM.Further experimental results show that the maximum efficiency is less than 10%.The slippage on the contact interface should be the main reason for the low efficiency of HLUSM.
基金supported by the National Natural Science Foundation of China (No.51205193)the Research Fund for Doctoral Program of the Ministry of Education(No.20123218120037)
文摘It is difficult for the traditional pan-tilt-zoom(PTZ)system driven by electromagnetic motor to meet the growing demand for video surveillance system.The key challenge is high positioning accuracy,high dynamic performance and miniaturization of the PTZ system.Here a PTZ system driven by two degree-of-freedom obeliskshaped ultrasonic motor with single stator is presented,and its intelligent control algorithm is studied.The structure and driving mechanism of the presented PTZ system are analyzed by both simulation and experiment.To solve the complex nonlinear factors,e.g.time-variation,dead zone,the fuzzy PID control algorithm and the variable gain cross-coupled control strategy are combined to improve the control performance.The results show that the proposed algorithm has faster response,higher precision than traditional control algorithm,and it also has a good robustness to prevent the effect of interference.