陶瓷基复合材料(ceramic matrix composites,CMC)作为一种优异的高温结构材料,在航空发动机领域得到了广泛应用。目前,依据GJB 10311—2021的双切口面内剪切实验方法存在明显局限性:切口位置处的应力集中效应导致标距区平均剪切应力计...陶瓷基复合材料(ceramic matrix composites,CMC)作为一种优异的高温结构材料,在航空发动机领域得到了广泛应用。目前,依据GJB 10311—2021的双切口面内剪切实验方法存在明显局限性:切口位置处的应力集中效应导致标距区平均剪切应力计算结果偏高,使得面内剪切模量测试结果与V形缺口剪切实验偏差可达30%。为此,本工作将数字图像相关方法(DIC)与双切口剪切实验相结合,开发一种面内剪切力学性能测试的新方法。为消除切口处应力集中的影响,提出采用有限元模型修正技术(finite element model updating,FEMU),利用DIC实测标距区内面内平均剪切应变与数值计算应变之间的方差构造目标函数,迭代获得材料的面内剪切模量。为便于工程应用,通过优化试样切口深度,实现单次实验即可获得材料的面内剪切模量和面内剪切强度,并采用SiC/SiC正交层合陶瓷基复合材料进一步验证了该实验方法的可行性和测试结果的可靠性。结果表明:该实验方法可同时准确测定陶瓷基复合材料的面内剪切模量和强度,测试结果与V形缺口实验结果偏差小于5%。相较V形缺口剪切实验,该方法实验工装和试样尺寸更小,更适用于高温面内剪切实验。SiC/SiC复合材料面内剪切应力-应变存在典型的屈服点,且屈服后剪切行为表现出典型的线性应变强化特征。展开更多
文摘陶瓷基复合材料(ceramic matrix composites,CMC)作为一种优异的高温结构材料,在航空发动机领域得到了广泛应用。目前,依据GJB 10311—2021的双切口面内剪切实验方法存在明显局限性:切口位置处的应力集中效应导致标距区平均剪切应力计算结果偏高,使得面内剪切模量测试结果与V形缺口剪切实验偏差可达30%。为此,本工作将数字图像相关方法(DIC)与双切口剪切实验相结合,开发一种面内剪切力学性能测试的新方法。为消除切口处应力集中的影响,提出采用有限元模型修正技术(finite element model updating,FEMU),利用DIC实测标距区内面内平均剪切应变与数值计算应变之间的方差构造目标函数,迭代获得材料的面内剪切模量。为便于工程应用,通过优化试样切口深度,实现单次实验即可获得材料的面内剪切模量和面内剪切强度,并采用SiC/SiC正交层合陶瓷基复合材料进一步验证了该实验方法的可行性和测试结果的可靠性。结果表明:该实验方法可同时准确测定陶瓷基复合材料的面内剪切模量和强度,测试结果与V形缺口实验结果偏差小于5%。相较V形缺口剪切实验,该方法实验工装和试样尺寸更小,更适用于高温面内剪切实验。SiC/SiC复合材料面内剪切应力-应变存在典型的屈服点,且屈服后剪切行为表现出典型的线性应变强化特征。
文摘短梁剪切(short beam shear,SBS)实验结合数字图像相关技术(digital image correlation,DIC)可实现快速识别单向纤维增强树脂基复合材料的多力学性能参数,而且能够获得复合材料单向应力状态下完整的层间剪切应力-应变行为和层间剪切强度,这对建立厚截面复合材料三维应力状态的强度准则至关重要。为研究实验设计对材料层间剪切力学参数识别精度的影响,本研究首次发展了由四台CCD相机组成的两套立体数字图像相关系统,实测SBS实验加载过程中试样前后表面标距区内应变分布情况。结果表明:由于实验夹具工装配合中存在螺纹间隙,工装刚度不足,试样前后表面剪切应变分布不对称,相对偏差可达44%。一方面提出针对试样前后表面剪切应变非对称性分布、材料剪切力学性能参数识别的新方法,通过采用DIC技术和有限元模型修正技术(finite element model updating,FEMU),将试样前、后表面标距区的实测平均剪切应变和有限元模型相应位置处计算应变数据的方差作为目标函数进行本构参数和偏轴角度的识别,可获得材料完整的非线性剪切本构参数,且识别过程对初始参数不敏感;另一方面通过改进实验夹具提高工装刚度,消除非对称性剪切应变分布现象,准确地识别得到了单向层合板完整的层间剪切应力-应变本构关系参数。