β-Ga_(2)O_(3)是一种具有超宽带隙、高临界击穿场强和优异的巴利加优值的半导体材料,近年来在电力电子与深紫外光电探测等领域展现出巨大的应用潜力。金属有机化学气相沉积(Metal-organic chemical vapor deposition,MOCVD)技术凭借其...β-Ga_(2)O_(3)是一种具有超宽带隙、高临界击穿场强和优异的巴利加优值的半导体材料,近年来在电力电子与深紫外光电探测等领域展现出巨大的应用潜力。金属有机化学气相沉积(Metal-organic chemical vapor deposition,MOCVD)技术凭借其高生长速率、精确的膜厚控制、优异的薄膜质量和大尺寸生长等优势,成为未来β-Ga_(2)O_(3)走向产业化的潜在方法,并已被广泛应用于β-Ga_(2)O_(3)的外延生长研究。本文对几种常见晶向的β-Ga_(2)O_(3) MOCVD同质外延生长的研究成果进行了概述,并在此基础上介绍了极具潜力的β-(Al_(x)Ga_(1-x))_(2)O_(3)的MOCVD外延生长研究现状。最后,总结了基于MOCVD技术的β-Ga_(2)O_(3)同质外延生长以及β-(Al_(x)Ga_(1-x))_(2)O_(3)生长过程中面临的主要问题,并对未来的发展进行了展望。展开更多
当前,氮化镓(gallium nitride,GaN)高电子迁移率晶体管(high electron mobility transistors,HEMTs)器件已逐渐被广泛应用。然而,退化问题仍然是困扰其高可靠应用的重要因素。特别是开态应力下,器件的退化机理值得深入研究。文章基于实...当前,氮化镓(gallium nitride,GaN)高电子迁移率晶体管(high electron mobility transistors,HEMTs)器件已逐渐被广泛应用。然而,退化问题仍然是困扰其高可靠应用的重要因素。特别是开态应力下,器件的退化机理值得深入研究。文章基于实验测试及仿真,重点研究了氮化镓射频HEMT器件在开态应力下的退化现象与机理。研究结果表明,单一的高漏压应力并不会对器件带来明显退化,而高漏压与大的漏极电流结合则会对器件产生明显退化,这一影响重点集中在栅极与漏极之间的有源区。需要注意的是,栅极偏置电压在沟道电子进入栅下区域的过程中也起到了重要作用。开态应力下,栅极偏压形成的垂直电场会使得器件栅下区域损伤更加严重。文章的研究成果可以为氮化镓射频器件在复杂环境下的高可靠性应用提供重要支撑。展开更多
文摘β-Ga_(2)O_(3)是一种具有超宽带隙、高临界击穿场强和优异的巴利加优值的半导体材料,近年来在电力电子与深紫外光电探测等领域展现出巨大的应用潜力。金属有机化学气相沉积(Metal-organic chemical vapor deposition,MOCVD)技术凭借其高生长速率、精确的膜厚控制、优异的薄膜质量和大尺寸生长等优势,成为未来β-Ga_(2)O_(3)走向产业化的潜在方法,并已被广泛应用于β-Ga_(2)O_(3)的外延生长研究。本文对几种常见晶向的β-Ga_(2)O_(3) MOCVD同质外延生长的研究成果进行了概述,并在此基础上介绍了极具潜力的β-(Al_(x)Ga_(1-x))_(2)O_(3)的MOCVD外延生长研究现状。最后,总结了基于MOCVD技术的β-Ga_(2)O_(3)同质外延生长以及β-(Al_(x)Ga_(1-x))_(2)O_(3)生长过程中面临的主要问题,并对未来的发展进行了展望。
文摘当前,氮化镓(gallium nitride,GaN)高电子迁移率晶体管(high electron mobility transistors,HEMTs)器件已逐渐被广泛应用。然而,退化问题仍然是困扰其高可靠应用的重要因素。特别是开态应力下,器件的退化机理值得深入研究。文章基于实验测试及仿真,重点研究了氮化镓射频HEMT器件在开态应力下的退化现象与机理。研究结果表明,单一的高漏压应力并不会对器件带来明显退化,而高漏压与大的漏极电流结合则会对器件产生明显退化,这一影响重点集中在栅极与漏极之间的有源区。需要注意的是,栅极偏置电压在沟道电子进入栅下区域的过程中也起到了重要作用。开态应力下,栅极偏压形成的垂直电场会使得器件栅下区域损伤更加严重。文章的研究成果可以为氮化镓射频器件在复杂环境下的高可靠性应用提供重要支撑。