We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critica...We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
基金the National Natural Science Foundation of China(Grant No.12204406)the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.