期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CEEMD-CSO-ELM的短期风速预测
1
作者 邹兰珍 《现代信息科技》 2019年第20期12-15,共4页
风电在电网系统中的成功整合与应用需要风电机组或风电场产生的风电信息,又因为风速具有不可预测性、间歇性和非线性等特性,所以准确预测非常具有挑战性。因此,本文提出了一种基于互补经验模态分解(CEEMD)与CSO优化神经网络预测模型相... 风电在电网系统中的成功整合与应用需要风电机组或风电场产生的风电信息,又因为风速具有不可预测性、间歇性和非线性等特性,所以准确预测非常具有挑战性。因此,本文提出了一种基于互补经验模态分解(CEEMD)与CSO优化神经网络预测模型相结合的短期风速预测的新方法,来达到更优的预测效果。在本文中,CEEMD用于将风速数据分解为多个固有模态函数(IMFs)来进行预测;然后对所有分量建立纵横交叉算法优化极限学习机(CSO-ELM)的预测模型;最后叠加所有序列的预测值作为最终的预测结果。本文对荷兰某风电场的实测小时风速数据集进行大量实验得出结果,来验证所提方法的有效性。 展开更多
关键词 互补经验模态分解 纵横交叉算法 极限学习机 风速预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部