To enhance encoding efficiency, an unequal error protection (UEP) broadcast scheme based on one additional feedback is proposed. Different from the equal probability selection for source packets in traditional fount...To enhance encoding efficiency, an unequal error protection (UEP) broadcast scheme based on one additional feedback is proposed. Different from the equal probability selection for source packets in traditional fountain encoding, the proposed scheme calculates the packet loss ratio (PLR) according to the feedback results in systematic broadcast phase (SBP) and then optimizes the selection probability for source packets to guarantee higher level error protection for those source packets with larger PLRs. Thus the amount of unnecessarily redundant encoded packets during encoding broadcast phase (EBP) is decreased significantly. Numerical results show that the proposed scheme can recover 60% more packets than the traditional non-feedback broadcast scheme at the ex- pense of tolerably only one feedback procedure.展开更多
For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibi...For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information ( CSI ) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.展开更多
Linear transceiver designs are investigated for distributed two-way relaying networks,which aim at minimising the WeightedMean Square Error(WMSE) of data detections.The forwarding matrices at relays andequalization ma...Linear transceiver designs are investigated for distributed two-way relaying networks,which aim at minimising the WeightedMean Square Error(WMSE) of data detections.The forwarding matrices at relays andequalization matrices at destinations are jointly optimised.To overcome the challenginglimitations introduced by individual powerconstraints,a Semi-Definite Relaxation(SDR)called element-wise relaxation is proposed,which can transform the original optimizationproblem into a standard convex optimizationproblem.In this research,two-way relaying isunderstood from a pure signal processing perspective which can potentially simplify thetheoretical analysis.Finally,simulation resultsare used for assessing the performance advantage of the proposed algorithm.展开更多
A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. L...A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. Link adaptation technique, which combines adaptive modulation and coding ( AMC ) with truncated ARQ, can maximize the cellular UEs' data rate under prescribed delay and performance constraints. The proposed method can maximize the total transmission rate when an outage probability is determined. Numerical results show that with proper power control, the in- terference between the two links can be coordinated to increase the sum rate without overwhelming the cellular service.展开更多
To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input...To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input multiple-output (MIMO) system. In the scheme, the channel nullspace quantization vector is used as the transmit beamformer of the interference user directly based on channel null-space feedback. Since the interference can be determined at the receiver, interference rejection combining (IRC) is jointly utilized to cancel the inter-user interference. Simulation re- sults show that the proposed scheme can provide substantial sum-rate improvement especially at high SNR.展开更多
基金Supported by China National S&T Major Project(2013ZX03003002003)the National Natural Science Foundation of China(61371075)"111"Project of China(B14010)
文摘To enhance encoding efficiency, an unequal error protection (UEP) broadcast scheme based on one additional feedback is proposed. Different from the equal probability selection for source packets in traditional fountain encoding, the proposed scheme calculates the packet loss ratio (PLR) according to the feedback results in systematic broadcast phase (SBP) and then optimizes the selection probability for source packets to guarantee higher level error protection for those source packets with larger PLRs. Thus the amount of unnecessarily redundant encoded packets during encoding broadcast phase (EBP) is decreased significantly. Numerical results show that the proposed scheme can recover 60% more packets than the traditional non-feedback broadcast scheme at the ex- pense of tolerably only one feedback procedure.
基金Supported by National S&T Major Project of China(2013ZX03003002-003)
文摘For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information ( CSI ) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.
基金supported in part by EricssonNational Science and Technology Major Project under Grant No.2010ZX03003-003-03+2 种基金Sino-Swedish IMT-Advanced and Beyond Cooperative Program under Grant No.2008DFA11780National Natural Science Foundation of China under Grant No.61101130the Excellent Young Scholar Research Funding of Beijing Institute of Technology under Grant No.2013CX04038
文摘Linear transceiver designs are investigated for distributed two-way relaying networks,which aim at minimising the WeightedMean Square Error(WMSE) of data detections.The forwarding matrices at relays andequalization matrices at destinations are jointly optimised.To overcome the challenginglimitations introduced by individual powerconstraints,a Semi-Definite Relaxation(SDR)called element-wise relaxation is proposed,which can transform the original optimizationproblem into a standard convex optimizationproblem.In this research,two-way relaying isunderstood from a pure signal processing perspective which can potentially simplify thetheoretical analysis.Finally,simulation resultsare used for assessing the performance advantage of the proposed algorithm.
基金Supported by the China Major National S&T Program(2010ZX03003-003)China-EU International Scientific and Technological Cooperation Program(0902)+1 种基金the Sino-Swedish IMT-Advanced and Beyond Cooperative Program(2008DFA11780)the Open Project Program of Guangdong Provincial Key Laboratory of Short-Range Wireless Detection and Communication and PCSIRT-IRT(1005)
文摘A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. Link adaptation technique, which combines adaptive modulation and coding ( AMC ) with truncated ARQ, can maximize the cellular UEs' data rate under prescribed delay and performance constraints. The proposed method can maximize the total transmission rate when an outage probability is determined. Numerical results show that with proper power control, the in- terference between the two links can be coordinated to increase the sum rate without overwhelming the cellular service.
基金Supported by the Sino-Swedish IMT-Advanced and Beyond Cooperative Program(2008DFA11780)
文摘To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input multiple-output (MIMO) system. In the scheme, the channel nullspace quantization vector is used as the transmit beamformer of the interference user directly based on channel null-space feedback. Since the interference can be determined at the receiver, interference rejection combining (IRC) is jointly utilized to cancel the inter-user interference. Simulation re- sults show that the proposed scheme can provide substantial sum-rate improvement especially at high SNR.