以六水合氯化铁为铁源,尿素为沉淀剂和软模板,乙二醇为溶剂,通过溶剂热法制备分散性良好且尺寸均匀的空心Fe_3O_4纳米颗粒,采用二次水热法制备核-壳结构的空心Fe_3O_4/C纳米颗粒。研究表明,空心状的Fe_3O_4纳米颗粒表面均匀地包覆了一...以六水合氯化铁为铁源,尿素为沉淀剂和软模板,乙二醇为溶剂,通过溶剂热法制备分散性良好且尺寸均匀的空心Fe_3O_4纳米颗粒,采用二次水热法制备核-壳结构的空心Fe_3O_4/C纳米颗粒。研究表明,空心状的Fe_3O_4纳米颗粒表面均匀地包覆了一层无定型碳层。相比单独的空心Fe_3O_4纳米颗粒,包碳后核壳结构的Fe_3O_4/C复合材料电磁波吸收性能显著增强。在匹配厚度仅为4.5 mm时,在11.6 GHz时,其最小反射损耗值可达到-25.2 d B,表现出良好的微波吸波特性。此类核-壳状Fe_3O_4/C磁性球在雷达波吸收、通讯领域等具有广泛的应用前景。展开更多
文摘以六水合氯化铁为铁源,尿素为沉淀剂和软模板,乙二醇为溶剂,通过溶剂热法制备分散性良好且尺寸均匀的空心Fe_3O_4纳米颗粒,采用二次水热法制备核-壳结构的空心Fe_3O_4/C纳米颗粒。研究表明,空心状的Fe_3O_4纳米颗粒表面均匀地包覆了一层无定型碳层。相比单独的空心Fe_3O_4纳米颗粒,包碳后核壳结构的Fe_3O_4/C复合材料电磁波吸收性能显著增强。在匹配厚度仅为4.5 mm时,在11.6 GHz时,其最小反射损耗值可达到-25.2 d B,表现出良好的微波吸波特性。此类核-壳状Fe_3O_4/C磁性球在雷达波吸收、通讯领域等具有广泛的应用前景。