期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于G方检验的CP-nets学习 被引量:4
1
作者 辛冠琳 刘惊雷 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期781-795,共15页
偏好处理是人工智能中的一个重要的研究内容,条件偏好网(conditional preference networks,CP-nets)是一个带标记的有向图,它编码相关变量之间的偏好关系.作为一种简单直观的图形偏好表示工具,却很少有工作对CP-nets的结构进行研究.研究... 偏好处理是人工智能中的一个重要的研究内容,条件偏好网(conditional preference networks,CP-nets)是一个带标记的有向图,它编码相关变量之间的偏好关系.作为一种简单直观的图形偏好表示工具,却很少有工作对CP-nets的结构进行研究.研究CP-nets的结构,提出了基于G方检验对CP-nets进行结构学习的算法,并给出算法的时间复杂度为O(n·2n).作为一种对数似然比检验方法,G方检验特别适合于判断变量之间的因果关系.由于CP-nets的核心概念是条件偏好无关,因此利用G方检验可有效地实现CP-nets的结构学习.通过构造G方检验的统计量,在给定的成对比较样本集中,执行零假设检验,从而依次求出每个顶点的父亲集,进而得到CP-nets的结构.最后,通过随机生成的模拟数据,验证了所提出算法的有效性.与相关CP-nets的学习算法对比,本文提出的方法具有被动的,离线的,和基于统计学习的特征. 展开更多
关键词 G方检验 对数似然比检验 因果关系 条件偏好无关 零假设检验
在线阅读 下载PDF
从偏好数据库中挖掘Ceteris Paribus偏好 被引量:3
2
作者 辛冠琳 刘惊雷 《计算机应用》 CSCD 北大核心 2016年第8期2092-2098,2108,共8页
针对传统的推荐系统需要用户给出明确的偏好矩阵(U-I矩阵),进而使用自动化技术来获取用户偏好的问题,提出了一种从偏好数据库中挖掘出Agent的偏好信息的方法。从知识发现的角度,通过Ceteris Paribus规则(CP规则),提出了k阶偏好挖掘算法(... 针对传统的推荐系统需要用户给出明确的偏好矩阵(U-I矩阵),进而使用自动化技术来获取用户偏好的问题,提出了一种从偏好数据库中挖掘出Agent的偏好信息的方法。从知识发现的角度,通过Ceteris Paribus规则(CP规则),提出了k阶偏好挖掘算法(kPreM)。在算法中,利用k阶CP规则对偏好数据库中的信息进行剪枝处理,减少了数据库扫描次数,从而提高了偏好信息的挖掘效率。随后以一种通用的图模型——条件偏好网(CP-nets)为工具,揭示了用户的偏好可近似表达为CP-nets的定性条件偏好网。实验结果表明,用户的偏好都是带有条件的偏好。另外,通过挖掘得出的CP-nets偏好模型,为设计个性化的推荐系统提供了理论基础。 展开更多
关键词 自动化技术 偏好数据库 知识发现 CP规则 定性条件偏好网
在线阅读 下载PDF
基于精确P值计算学习无环CP-nets 被引量:3
3
作者 辛冠琳 刘惊雷 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期450-461,共12页
作为一种简单直观的图形表示工具,条件偏好网(conditional preference networks,CP-nets)可表示ceteris paribus(其他条件都不变)的偏好关系.学习无环CP-nets是人工智能领域中的一个重要的研究内容,它可广泛使用在推荐系统、信息检索和... 作为一种简单直观的图形表示工具,条件偏好网(conditional preference networks,CP-nets)可表示ceteris paribus(其他条件都不变)的偏好关系.学习无环CP-nets是人工智能领域中的一个重要的研究内容,它可广泛使用在推荐系统、信息检索和群体抉择中.特别是有效地学习无环CP-nets的结构,即获取变量之间的因果关系,是当前最主要的研究任务.传统的算法利用不同的方式对CP-nets的结构进行学习,但很多方法学习得到的并不是无环CP-nets.采用精确P值计算学习方法,根据Dijkstra算法原理,设计了新的算法——PALA,并通过该算法学习无环CP-nets结构.随后证明了算法的时间复杂度是O(n3·2n).作为一种精确学习方法,精确P值计算方法可有效衡量变量之间的依赖程度,确定变量之间的因果关系,进而学习得到无环CP-nets结构.实验结果表明,与其他算法相比,PALA算法通常能够发现高质量的、结构最优的无环CP-nets.研究结果还表明,无环CP-nets学习问题的解决显著地提高了PALA算法的效率. 展开更多
关键词 条件偏好网 精确P值计算 Dijkstra算法原理 因果关系 无环结构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部