In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. Th...In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables. The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing. This result is of practical importance when the realistic experimental conditions are taken into consideration .展开更多
Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dis...Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.展开更多
Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth ...Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth is used to obtain the non-degenerate signal and idler beam amplifications. On account of that, we derive an analytical solution for the non-degenerate optical parametric amplification system with finite bandwidth laser pumping, and evaluate the associated quantum fluctuation. Finally, the application of the V1 criterion to bipartite entanglement is discussed.展开更多
This paper investigates quantum fluctuations characteristic of time-dependent broadband pumping frequency non-degenerate optical parametric amplifier for below and above threshold regions. It finds that a high squeezi...This paper investigates quantum fluctuations characteristic of time-dependent broadband pumping frequency non-degenerate optical parametric amplifier for below and above threshold regions. It finds that a high squeezing and entanglement can be achieved.展开更多
This paper applies the minimum variance V1 criterion to monitor the evolution of signal and idler modes of a composite non-degenerate optical parametric amplification (NOPA) system. The analytics and numerical calcu...This paper applies the minimum variance V1 criterion to monitor the evolution of signal and idler modes of a composite non-degenerate optical parametric amplification (NOPA) system. The analytics and numerical calculation show the influence of the transition time, the vacuum fluctuations, and the thermal noise level on the EPR entanglement of the composite NOPA system. It finds that the entanglement and the squeezing degrade as the minimum variance V1 increases.展开更多
We investigate the quantum fluctuation characteristic for time dependent regular loss modulated optical parametric amplifier for below and above threshold regions. It is found that a high squeezing and entanglement ca...We investigate the quantum fluctuation characteristic for time dependent regular loss modulated optical parametric amplifier for below and above threshold regions. It is found that a high squeezing and entanglement can be achieved.展开更多
The solution of the time-dependent periodic pumping non-degenerate optical parametric amplifier (NOPA) is derived when the pump depletion is considered both above and below thresholds. Based on this solution, the qu...The solution of the time-dependent periodic pumping non-degenerate optical parametric amplifier (NOPA) is derived when the pump depletion is considered both above and below thresholds. Based on this solution, the quantum fluctuation calculated shows that a high entanglement and a good squeezing degree of the parametric light beams are achieved near and above thresholds. We adopt two kinds of pump fields: (i) a continuously modulated pump with a sinusoidal envelope; (ii) a sequence of laser pulses with Gaussian envelopes. We analyse the time evolution of continuous variable entanglement by analytical and numerical calculations, and show that the periodic driven pumping also improves the degree of entanglement. The squeezing and Einstein-Podolsky-Rosen (EPR) entanglement by using the two pumping driven functions are investigated from below to above the threshold regions, the tendencies are nearly the same, and the Caussian driven function is superior to that of the sine driven function, when the maximum squeezing and the minimum variance of quantum fluctuation are considered. In the meantime, the generalization of frequency degenerate OPA to frequency non-degenerated OPA problem is investigated.展开更多
Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the ...Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the LG beam remains straight line.These ways are difficult to get a large OAM modes.In this paper,we propose a novel method to prepare a large OAM modes when the light propagates through a optical fiber winding around a curved path,and establish a theoretical framework based on the principal ray path changing.Firstly,we investigate three kinds of winding structure.Secondly,based on the analytical solutions and numerical calculations,we can find that the spiral body can achieve a large OAM temporal pulse.At the same time,based on the zero OAM diffraction diagram,we can obtain an improvement of resolving power beyond Rayleigh’s criterion.Finally,applying a large OAM diffraction pattern to realize 12-bitencodes,we can obtain a high-security optical information transfer system.展开更多
We investigate the fundamental limits to the achievable tripartite continuous-variable (CV) entanglement criterion of a generalized Vl criterion. Our numerical simulation results show that the non-degenerate eigenva...We investigate the fundamental limits to the achievable tripartite continuous-variable (CV) entanglement criterion of a generalized Vl criterion. Our numerical simulation results show that the non-degenerate eigenvalues do effect the performances of the estimated minimum variances. From below the threshold to above the threshold, with the increase of the pump parameter, the tripartite CV entanglement gradually disappears. The different off-diagonal elements seriously distort the weights for entanglement. We can obtain a good tripartite CV entanglement by appropriately controlling the values of off-diagonal elements eij.展开更多
文摘In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables. The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing. This result is of practical importance when the realistic experimental conditions are taken into consideration .
基金Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Taiyuan 030006,China(Grant No.KF201401)the National Natural Science Foundation of China(Grant No.11404084)
文摘Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.
文摘Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth is used to obtain the non-degenerate signal and idler beam amplifications. On account of that, we derive an analytical solution for the non-degenerate optical parametric amplification system with finite bandwidth laser pumping, and evaluate the associated quantum fluctuation. Finally, the application of the V1 criterion to bipartite entanglement is discussed.
基金Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,China(Grant No.200904)
文摘This paper investigates quantum fluctuations characteristic of time-dependent broadband pumping frequency non-degenerate optical parametric amplifier for below and above threshold regions. It finds that a high squeezing and entanglement can be achieved.
基金Project supported by the Natural Science Foundation of Shanxi Province,China (Grant No. 2006011003)
文摘This paper applies the minimum variance V1 criterion to monitor the evolution of signal and idler modes of a composite non-degenerate optical parametric amplification (NOPA) system. The analytics and numerical calculation show the influence of the transition time, the vacuum fluctuations, and the thermal noise level on the EPR entanglement of the composite NOPA system. It finds that the entanglement and the squeezing degrade as the minimum variance V1 increases.
基金Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Shanxi,China (Grant No. 200904)
文摘We investigate the quantum fluctuation characteristic for time dependent regular loss modulated optical parametric amplifier for below and above threshold regions. It is found that a high squeezing and entanglement can be achieved.
基金Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No 2006011003)
文摘The solution of the time-dependent periodic pumping non-degenerate optical parametric amplifier (NOPA) is derived when the pump depletion is considered both above and below thresholds. Based on this solution, the quantum fluctuation calculated shows that a high entanglement and a good squeezing degree of the parametric light beams are achieved near and above thresholds. We adopt two kinds of pump fields: (i) a continuously modulated pump with a sinusoidal envelope; (ii) a sequence of laser pulses with Gaussian envelopes. We analyse the time evolution of continuous variable entanglement by analytical and numerical calculations, and show that the periodic driven pumping also improves the degree of entanglement. The squeezing and Einstein-Podolsky-Rosen (EPR) entanglement by using the two pumping driven functions are investigated from below to above the threshold regions, the tendencies are nearly the same, and the Caussian driven function is superior to that of the sine driven function, when the maximum squeezing and the minimum variance of quantum fluctuation are considered. In the meantime, the generalization of frequency degenerate OPA to frequency non-degenerated OPA problem is investigated.
基金supported by the National Natural Science Foundation of China(Grant No.11504074)the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University(Grant No.KF202004).
文摘Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the LG beam remains straight line.These ways are difficult to get a large OAM modes.In this paper,we propose a novel method to prepare a large OAM modes when the light propagates through a optical fiber winding around a curved path,and establish a theoretical framework based on the principal ray path changing.Firstly,we investigate three kinds of winding structure.Secondly,based on the analytical solutions and numerical calculations,we can find that the spiral body can achieve a large OAM temporal pulse.At the same time,based on the zero OAM diffraction diagram,we can obtain an improvement of resolving power beyond Rayleigh’s criterion.Finally,applying a large OAM diffraction pattern to realize 12-bitencodes,we can obtain a high-security optical information transfer system.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11504074)the Science Fund from the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Shanxi,China(Grant No.KF201601)
文摘We investigate the fundamental limits to the achievable tripartite continuous-variable (CV) entanglement criterion of a generalized Vl criterion. Our numerical simulation results show that the non-degenerate eigenvalues do effect the performances of the estimated minimum variances. From below the threshold to above the threshold, with the increase of the pump parameter, the tripartite CV entanglement gradually disappears. The different off-diagonal elements seriously distort the weights for entanglement. We can obtain a good tripartite CV entanglement by appropriately controlling the values of off-diagonal elements eij.