期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SVR和CNN-LSTM-ATTENTION模型的粮食产量影响因素分析和组合预测
1
作者 赵垭越 樊琳琳 +2 位作者 秦政 苗敬利 吕彬 《中国粮油学报》 北大核心 2025年第9期190-198,共9页
本研究旨在提高粮食产量预测的准确性,以河北省为例,采用1990—2021年河北省的粮食产量数据,通过相关性分析、共线性分析、灰色关联度分析等方法和异常值剔除,筛选出了11个关键变量。构建了基于支持向量回归(SVR)和卷积神经网络-长短期... 本研究旨在提高粮食产量预测的准确性,以河北省为例,采用1990—2021年河北省的粮食产量数据,通过相关性分析、共线性分析、灰色关联度分析等方法和异常值剔除,筛选出了11个关键变量。构建了基于支持向量回归(SVR)和卷积神经网络-长短期记忆网络-注意力机制(CNN-LSTM-ATTENTION)的组合预测模型,以提高粮食产量预测精度。实证分析表明,组合模型有效整合了SVR处理非线性关系的能力与CNN-LSTM-ATTENTION捕捉时序特征的优势。平均绝对百分比误差(MAPE)仅为1.498%,相较于单一的SVR模型和CNN-LSTM-ATTENTION模型分别提高了17%和42%,显示出更好的泛化能力和鲁棒性。 展开更多
关键词 粮食产量 SVR CNN-LSTM-ATTENTION 灰色关联
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部