期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力机制堆叠LSTM的多传感器信息融合刀具磨损预测 被引量:1
1
作者 成佳闻 赛希亚拉图 +1 位作者 张超勇 罗敏 《工业工程》 2024年第3期64-77,86,共15页
刀具磨损是影响数控机床加工质量和加工效率的重要因素之一。针对现有铣刀磨损预测中信号单一和预测精度不足的问题,提出了一种基于注意力机制的堆叠LSTM (long short-term memory,长短期记忆网络)的多传感器信息融合刀具磨损预测方法... 刀具磨损是影响数控机床加工质量和加工效率的重要因素之一。针对现有铣刀磨损预测中信号单一和预测精度不足的问题,提出了一种基于注意力机制的堆叠LSTM (long short-term memory,长短期记忆网络)的多传感器信息融合刀具磨损预测方法。对多传感器信号进行预处理,然后提取多域特征,利用核主成分分析法对其进行特征级信息融合,得到后续网络的输入。采用基于注意力机制的堆叠LSTM网络模型,使得网络能够自适应地学习数据的重要信息,在PHM2010的数据集上预测精度达到99.9%。通过与其他算法的对比试验和加入人工噪声的方法,验证了本文所提出的模型的高精度和鲁棒性。 展开更多
关键词 刀具磨损 核主成分分析(KPCA) 信息融合 注意力机制 鲁棒性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部