期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度卷积神经网络的柑橘黄龙病症状识别
被引量:
11
1
作者
戴泽翰
郑正
+4 位作者
黄莉舒
赖云燕
鲍敏丽
许美容
邓晓玲
《华南农业大学学报》
CAS
CSCD
北大核心
2020年第4期111-119,共9页
【目的】探究深度学习在柑橘Citrus spp.黄龙病症状识别上的可行性,并评估识别器的识别准确率。【方法】以黄龙病/非黄龙病引起的发病叶片图像及健康叶片图像为训练素材,基于卷积神经网络及迁移学习技术构建二类识别器(I-2-C和M-2-C)和...
【目的】探究深度学习在柑橘Citrus spp.黄龙病症状识别上的可行性,并评估识别器的识别准确率。【方法】以黄龙病/非黄龙病引起的发病叶片图像及健康叶片图像为训练素材,基于卷积神经网络及迁移学习技术构建二类识别器(I-2-C和M-2-C)和八类识别器(I-8-C和M-8-C)。【结果】M-8-C模型的整体识别表现最优,对所有图像的识别准确率为93.7%,表明构建的神经网络识别器能有效辨别柑橘黄龙病症状;I-8-C和M-8-C对所有类型图像的平均F1分值分别为77.9%和88.4%,高于I-2-C(56.3%)和M-2-C(52.5%),表明症状细分有利于提高模型的识别能力。同时M-8-C比I-8-C略高的平均F1分值表明基于MobileNetV1结构的八类识别器识别表现略优于基于InceptionV3的八类识别器。基于M-8-C改进的识别器M-8f-C能够转移到智能手机上,在田间测试中取得较好的识别表现。【结论】基于深度学习和迁移学习开发的识别器对黄龙病单叶症状具有较好的识别效果。
展开更多
关键词
柑橘黄龙病
症状识别
卷积神经网络
迁移学习
在线阅读
下载PDF
职称材料
题名
基于深度卷积神经网络的柑橘黄龙病症状识别
被引量:
11
1
作者
戴泽翰
郑正
黄莉舒
赖云燕
鲍敏丽
许美容
邓晓玲
机构
华南农业大学农学院
出处
《华南农业大学学报》
CAS
CSCD
北大核心
2020年第4期111-119,共9页
基金
广西科技重大专项“柑橘黄龙病综合防控技术研究与示范”(桂科AA18118027-2)。
文摘
【目的】探究深度学习在柑橘Citrus spp.黄龙病症状识别上的可行性,并评估识别器的识别准确率。【方法】以黄龙病/非黄龙病引起的发病叶片图像及健康叶片图像为训练素材,基于卷积神经网络及迁移学习技术构建二类识别器(I-2-C和M-2-C)和八类识别器(I-8-C和M-8-C)。【结果】M-8-C模型的整体识别表现最优,对所有图像的识别准确率为93.7%,表明构建的神经网络识别器能有效辨别柑橘黄龙病症状;I-8-C和M-8-C对所有类型图像的平均F1分值分别为77.9%和88.4%,高于I-2-C(56.3%)和M-2-C(52.5%),表明症状细分有利于提高模型的识别能力。同时M-8-C比I-8-C略高的平均F1分值表明基于MobileNetV1结构的八类识别器识别表现略优于基于InceptionV3的八类识别器。基于M-8-C改进的识别器M-8f-C能够转移到智能手机上,在田间测试中取得较好的识别表现。【结论】基于深度学习和迁移学习开发的识别器对黄龙病单叶症状具有较好的识别效果。
关键词
柑橘黄龙病
症状识别
卷积神经网络
迁移学习
Keywords
Citrus Huanglongbing
symptom recognition
convolutional neural network
transfer learning
分类号
S436.66 [农业科学—农业昆虫与害虫防治]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度卷积神经网络的柑橘黄龙病症状识别
戴泽翰
郑正
黄莉舒
赖云燕
鲍敏丽
许美容
邓晓玲
《华南农业大学学报》
CAS
CSCD
北大核心
2020
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部