期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于xLSTM-Informer的瓦斯浓度预测模型研究
1
作者
谭波
杨宽
+5 位作者
隋龙琨
左云飞
高赛逸
汤松鹭
高科天
贾锦祥
《工矿自动化》
北大核心
2025年第9期81-89,共9页
针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残...
针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残差记忆单元提取短时间窗口内的波动模式与变量间的耦合信息,并将其转换为结构化时序序列表征,再将处理后的时序表示输入至Informer主干结构中,进一步在扩展的时间窗口中提取全局依赖关系与稳定趋势,从而在保持细节响应的同时增强预测的时序连续性。基于井下束管监测系统采集的多源环境参数数据,开展特征重要性分析,选取O_(2)浓度、温度与风速3个指标作为输入变量,构建输入特征体系。利用xLSTM提取深层时序特征,并通过Informer中引入的ProbSparse自注意力机制,有效捕捉时序特征中的全局依赖关系,从而提升模型对非平稳性瓦斯浓度预测的能力。为评估xLSTM-Informer模型在瓦斯浓度预测任务中的性能优势,与xLSTM模型、Transformer模型及经典Informer模型进行比较,结果表明:xLSTM-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)与决定系数R~2上均取得最优性能,R~2达0.954,较对比模型分别提升了21.4%, 17.8%和19.4%。为进一步验证xLSTM-Informer模型在瓦斯浓度预测任务中的有效性与适应性,选取某矿井综放工作面实测传感器数据进行实例验证,同时与LSTM-Transformer,RNN-Informer,LSTM-Informer和双向LSTM-Informer(BiLSTM-Informer)4类复合模型进行对比,结果表明:xLSTM-Informer模型在瓦斯浓度变化趋势与关键拐点的响应方面均优于对比模型,表现出较高的拟合性和时序同步性。
展开更多
关键词
瓦斯浓度预测
长时间序列预测
xLSTM
INFORMER
ProbSparse自注意力机制
在线阅读
下载PDF
职称材料
题名
基于xLSTM-Informer的瓦斯浓度预测模型研究
1
作者
谭波
杨宽
隋龙琨
左云飞
高赛逸
汤松鹭
高科天
贾锦祥
机构
中国矿业大学(北京)应急管理与安全工程学院
出处
《工矿自动化》
北大核心
2025年第9期81-89,共9页
基金
国家重点研发计划项目(2023YFC3009101)。
文摘
针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残差记忆单元提取短时间窗口内的波动模式与变量间的耦合信息,并将其转换为结构化时序序列表征,再将处理后的时序表示输入至Informer主干结构中,进一步在扩展的时间窗口中提取全局依赖关系与稳定趋势,从而在保持细节响应的同时增强预测的时序连续性。基于井下束管监测系统采集的多源环境参数数据,开展特征重要性分析,选取O_(2)浓度、温度与风速3个指标作为输入变量,构建输入特征体系。利用xLSTM提取深层时序特征,并通过Informer中引入的ProbSparse自注意力机制,有效捕捉时序特征中的全局依赖关系,从而提升模型对非平稳性瓦斯浓度预测的能力。为评估xLSTM-Informer模型在瓦斯浓度预测任务中的性能优势,与xLSTM模型、Transformer模型及经典Informer模型进行比较,结果表明:xLSTM-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)与决定系数R~2上均取得最优性能,R~2达0.954,较对比模型分别提升了21.4%, 17.8%和19.4%。为进一步验证xLSTM-Informer模型在瓦斯浓度预测任务中的有效性与适应性,选取某矿井综放工作面实测传感器数据进行实例验证,同时与LSTM-Transformer,RNN-Informer,LSTM-Informer和双向LSTM-Informer(BiLSTM-Informer)4类复合模型进行对比,结果表明:xLSTM-Informer模型在瓦斯浓度变化趋势与关键拐点的响应方面均优于对比模型,表现出较高的拟合性和时序同步性。
关键词
瓦斯浓度预测
长时间序列预测
xLSTM
INFORMER
ProbSparse自注意力机制
Keywords
gas concentration prediction
long-term series prediction
xLSTM
Informer
ProbSparse attention mechanism
分类号
TD712 [矿业工程—矿井通风与安全]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于xLSTM-Informer的瓦斯浓度预测模型研究
谭波
杨宽
隋龙琨
左云飞
高赛逸
汤松鹭
高科天
贾锦祥
《工矿自动化》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部