针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二...针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。展开更多
MEI(Measured Equation of Invariance)方法是一种有效的用于边界截断的数值计算方法,已在计算电磁学领域得到广泛应用,其中MEI方程的病态性是值得关注的一个问题.该文采用有限元方法求解与二维电磁波散射问题相关的Helmholtz方程,重点...MEI(Measured Equation of Invariance)方法是一种有效的用于边界截断的数值计算方法,已在计算电磁学领域得到广泛应用,其中MEI方程的病态性是值得关注的一个问题.该文采用有限元方法求解与二维电磁波散射问题相关的Helmholtz方程,重点研究将自适应遗传算法应用于MEI方程的求解.该文的研究结果表明,应用自适应遗传算法求解MEI方程是有效的.展开更多
文摘针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。
文摘MEI(Measured Equation of Invariance)方法是一种有效的用于边界截断的数值计算方法,已在计算电磁学领域得到广泛应用,其中MEI方程的病态性是值得关注的一个问题.该文采用有限元方法求解与二维电磁波散射问题相关的Helmholtz方程,重点研究将自适应遗传算法应用于MEI方程的求解.该文的研究结果表明,应用自适应遗传算法求解MEI方程是有效的.
文摘针对多介质可压缩流体动力学问题,提出了一种单元中心型二维MMALE(Multi-Material Arbitrary Lagrangian-Eulerian)方法。在拉氏步,流体力学方程组采用中心型间断有限元方法求解。对于混合网格,采用Tipton压力松弛模型更新物理量,用等参坐标法更新物质中心点坐标。界面重构采用一种健壮的MOF(Moment of Fluid)方法。在重映步提出了基于多边形相交的二阶积分守恒重映方法。该方法分为四个部分:多项式重构、多边形相交、积分和后验校正。多边形相交使用"剪裁投影"算法,显著降低了多边形相交算法的复杂度。后验校正是基于MOOD (Multi-dimensional Optimal Order Detection)限制策略,并做了一些改动以适应多介质的计算。数值算例表明,该方法具有二阶的精度和较好的鲁棒性。