制备了壳聚糖/乙炔黑复合修饰电极(CS-AB/GCE),采用SEM和交流阻抗法对其进行表征。并利用循环伏安法(CV)研究了萘酚异构体(α-N和β-N)在该修饰电极上的电化学行为,对实验条件进行了优化。结果表明,在p H 7.0的PBS缓冲液中,α-N和...制备了壳聚糖/乙炔黑复合修饰电极(CS-AB/GCE),采用SEM和交流阻抗法对其进行表征。并利用循环伏安法(CV)研究了萘酚异构体(α-N和β-N)在该修饰电极上的电化学行为,对实验条件进行了优化。结果表明,在p H 7.0的PBS缓冲液中,α-N和β-N在该修饰电极上均出现一不可逆氧化峰,且在20-200m V/s范围内,其峰电流与扫速呈线性关系,表明电极过程是受吸附控制的不可逆过程。计算了电极过程的部分动力学参数,优化了差分脉冲伏安法(DPV)的实验参数,并对α-N和β-N进行同时测定,发现二者的微分氧化峰电流值与其浓度在2.5×10-6-1.0×10-4mol/L范围内呈良好的线性关系(rα-N=0.996;rβ-N=0.998)。α-N和β-N的检出限(S/N=3)分别为3.4×10-7mol/L和2.4×10-7mol/L。采用该法对实际水样进行检测,得到α-N和β-N的加标回收率分别为96.7%-105.1%和98.8%-103.9%。展开更多
文摘制备了壳聚糖/乙炔黑复合修饰电极(CS-AB/GCE),采用SEM和交流阻抗法对其进行表征。并利用循环伏安法(CV)研究了萘酚异构体(α-N和β-N)在该修饰电极上的电化学行为,对实验条件进行了优化。结果表明,在p H 7.0的PBS缓冲液中,α-N和β-N在该修饰电极上均出现一不可逆氧化峰,且在20-200m V/s范围内,其峰电流与扫速呈线性关系,表明电极过程是受吸附控制的不可逆过程。计算了电极过程的部分动力学参数,优化了差分脉冲伏安法(DPV)的实验参数,并对α-N和β-N进行同时测定,发现二者的微分氧化峰电流值与其浓度在2.5×10-6-1.0×10-4mol/L范围内呈良好的线性关系(rα-N=0.996;rβ-N=0.998)。α-N和β-N的检出限(S/N=3)分别为3.4×10-7mol/L和2.4×10-7mol/L。采用该法对实际水样进行检测,得到α-N和β-N的加标回收率分别为96.7%-105.1%和98.8%-103.9%。