期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
旅游知识图谱特征学习的景点推荐 被引量:13
1
作者 贾中浩 古天龙 +3 位作者 宾辰忠 常亮 张伟涛 朱桂明 《智能系统学报》 CSCD 北大核心 2019年第3期430-437,共8页
基于知识图谱的推荐算法在多个领域取得了较好的效果,但仍然存在一些问题,如不能有效提取知识图谱中实体关系标签中的特征,推荐准确率会降低。因而提出将网络嵌入方法(network embedding)用于旅游知识图谱的特征提取,使得特征的提取更... 基于知识图谱的推荐算法在多个领域取得了较好的效果,但仍然存在一些问题,如不能有效提取知识图谱中实体关系标签中的特征,推荐准确率会降低。因而提出将网络嵌入方法(network embedding)用于旅游知识图谱的特征提取,使得特征的提取更加充分。通过对旅游知识图谱中不同标签的属性子图独立建模,利用深度学习模型挖掘游客及景点等图节点语义特征,进而获得融合各个标签语义的游客和景点特征向量,最终通过计算游客和景点相关性生成景点推荐列表。通过在真实旅游知识图谱上的实验,验证了利用网络嵌入方法对知识图谱中数据建模后,可以有效提取节点的深层特征。 展开更多
关键词 知识图谱 属性子图 特征学习 神经网络 景点推荐 网络嵌入 推荐算法 深度学习
在线阅读 下载PDF
基于知识图谱和用户长短期偏好的个性化景点推荐 被引量:9
2
作者 贾中浩 宾辰忠 +3 位作者 古天龙 常亮 朱桂明 陈炜 《智能系统学报》 CSCD 北大核心 2020年第5期990-997,共8页
基于序列化的推荐算法在多个领域取得了不错的效果,但仍存在一些问题,如没有考虑所有项与项之间的关系,推荐准确度会大大降低。因此提出一种基于知识图谱和用户长短期偏好(KG-ULSP)的个性化景点推荐方法。通过引入知识图谱,使用网络表... 基于序列化的推荐算法在多个领域取得了不错的效果,但仍存在一些问题,如没有考虑所有项与项之间的关系,推荐准确度会大大降低。因此提出一种基于知识图谱和用户长短期偏好(KG-ULSP)的个性化景点推荐方法。通过引入知识图谱,使用网络表示学习方法,学习景点的特征向量表示,使得具有相似结构和相似属性的景点在低维特征空间中的距离比较近,以此表示他们的高级语义特征。然后利用门控循环单元GRU对已学习到的景点特征向量进行序列化信息建模,进一步抽取景点的访问序列特征。另外,考虑到用户偏好可能随时间发生变化,KG-ULSP模型同时学习用户的长期偏好和短期偏好,最终预测并返回用户可能感兴趣的推荐列表。通过在真实旅游数据上的实验,验证了所提方法的有效性。 展开更多
关键词 知识图谱 推荐算法 网络表示学习 门控循环单元 个性化景点推荐 长短期用户偏好 特征学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部