MnBi compound is fabricated under a magnetic field of 1 T, and the c-axis of hexagonal MnBi crystal is aligned parallel to the magnetic field direction. The saturation magnetization Ms decreases with the increase of t...MnBi compound is fabricated under a magnetic field of 1 T, and the c-axis of hexagonal MnBi crystal is aligned parallel to the magnetic field direction. The saturation magnetization Ms decreases with the increase of temperature. At temperatures below 20OK, the coercive field Hc is about 150Oe, while the coercive field Hc increases with temperature above 200K. From 200K to 300K, the remnant magnetization Mr and the Mr/Ms increase with the temperature. Below 200K, Mr and Mr/M8 reach roughly a constant value. However, there is an abnormal increase at 100 K in He, Mr and Mr/Ms, which comes from a spin-reorientation in MnBi. Magnetization results show the spin-reorientation for MnBi at about 91 K due to the variations of the anisotropy constants.展开更多
Nanocrystalline Mn0.6Zn0.4Fe2O4 particles are synthesized under magnetic fields of O and 6 T, and their structural and magnetic properties are investigated. The magnetic field enhances the grain size and the lattice s...Nanocrystalline Mn0.6Zn0.4Fe2O4 particles are synthesized under magnetic fields of O and 6 T, and their structural and magnetic properties are investigated. The magnetic field enhances the grain size and the lattice strain. Magnetic measurements show that the majority of the 6 T nanoparticles are superparamagnetic nearly from 40 to 300 K. It is interesting that the saturation magnetization of the 6 T sample is about 18% and 16% higher than that of the 0 T sample at 120 and 300K, respectively.展开更多
基金Supported by the Shanghai Rising-Star Program under Grant Nos 07QA14026 and 09QA1406300, the National Natural Science Foundation of China under Grant Nos 10804072 and 50703029, the Science and Technology Commission of Shanghai Municipality under Grant Nos 0952nm02700, 2009025, 08JC1410400 and 09dz1202500, and the Innovation Program of Shanghai Municipal Education Commission under Grant No 11ZZ168.
文摘MnBi compound is fabricated under a magnetic field of 1 T, and the c-axis of hexagonal MnBi crystal is aligned parallel to the magnetic field direction. The saturation magnetization Ms decreases with the increase of temperature. At temperatures below 20OK, the coercive field Hc is about 150Oe, while the coercive field Hc increases with temperature above 200K. From 200K to 300K, the remnant magnetization Mr and the Mr/Ms increase with the temperature. Below 200K, Mr and Mr/M8 reach roughly a constant value. However, there is an abnormal increase at 100 K in He, Mr and Mr/Ms, which comes from a spin-reorientation in MnBi. Magnetization results show the spin-reorientation for MnBi at about 91 K due to the variations of the anisotropy constants.
基金Supported by the Shanghai Rising-Star Program Grant No 07QA14026, the National Natural Science Foundation of China Grant Nos 10804072, 50703029 and 10774097, STCSM Grant Nos 08JC1410400, 0752nm012, and 0952nm02700, and FNEDAEDT under Grant No 200235.
文摘Nanocrystalline Mn0.6Zn0.4Fe2O4 particles are synthesized under magnetic fields of O and 6 T, and their structural and magnetic properties are investigated. The magnetic field enhances the grain size and the lattice strain. Magnetic measurements show that the majority of the 6 T nanoparticles are superparamagnetic nearly from 40 to 300 K. It is interesting that the saturation magnetization of the 6 T sample is about 18% and 16% higher than that of the 0 T sample at 120 and 300K, respectively.