期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MDAM-GhostCNN的滚动轴承故障诊断方法
1
作者 郭俊锋 谭宝宏 王智明 《北京航空航天大学学报》 北大核心 2025年第4期1172-1184,共13页
针对传统故障诊断方法特征提取不充分、计算复杂及在变工况下识别准确率低的问题,提出一种基于混合域注意力机制(MDAM)-GhostCNN的滚动轴承故障诊断方法。采用马尔可夫转移场(MTF)将轴承振动信号转化为具有时间相关性的二维特征图;利用G... 针对传统故障诊断方法特征提取不充分、计算复杂及在变工况下识别准确率低的问题,提出一种基于混合域注意力机制(MDAM)-GhostCNN的滚动轴承故障诊断方法。采用马尔可夫转移场(MTF)将轴承振动信号转化为具有时间相关性的二维特征图;利用Ghost卷积计算精简的优点,构造出GhostCNN;设计一种MDAM,使网络从通道和空间2个维度充分捕获特征信息,实现特征通道间相互依赖的同时让网络有效关注特征空间信息。由此,构建出MDAM-GhostCNN模型。将MTF二维特征图输入到MDAM-GhostCNN模型中进行训练并输出诊断结果。采用凯斯西储大学和江南大学(JNU)轴承数据集进行实验验证,并对其数据集进行加噪处理。结果表明:在变工况下,所建模型有着更高的识别准确率、抗噪性能和泛化性能。 展开更多
关键词 滚动轴承 故障诊断 马尔可夫转移场 Ghost卷积 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部