期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于RF的并行CNN-TGLSTM热负荷预测模型 被引量:1
1
作者 谭全伟 薛贵军 谢文举 《华北理工大学学报(自然科学版)》 CAS 2024年第2期112-123,共12页
精准的热负荷预测不仅可以提高用户舒适度,还可以有效降低能源消耗。为了提升热负荷预测的准确性,本研究提出了一种基于随机森林的并行CNN和TGLSTM的短期热负荷预测模型。首先,采用随机森林算法对特征进行筛选;其次,利用并行网络CNN和... 精准的热负荷预测不仅可以提高用户舒适度,还可以有效降低能源消耗。为了提升热负荷预测的准确性,本研究提出了一种基于随机森林的并行CNN和TGLSTM的短期热负荷预测模型。首先,采用随机森林算法对特征进行筛选;其次,利用并行网络CNN和改进的LSTM分别提取时空特征;最后,将提取的特征与多头注意力机制动态结合。实验结果表明,并行CNN-TGLSTM-MA相较于传统的串行CNN-TGLSTM模型,在MAE和MSE方面分别降低了16.9%、26.8%,同时提升了3.5%的R2值,证明了所提出的并行CNN-TGLSTM-MA模型在短期热负荷预测方面的有效性和优越性,为热力系统供热负荷的精准调控提供了参考。 展开更多
关键词 短期热负荷预测 卷积神经网络 转换门控长短期记忆网络 多头注意力机制 随机森林
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部