期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Triplet Network的小样本轴承、齿轮故障诊断方法 被引量:3
1
作者 谢由生 张军 《机电工程》 CAS 北大核心 2022年第8期1111-1117,共7页
针对小样本条件下,深度神经网络在机械设备典型部件中(轴承、齿轮)故障诊断精度不高这一问题,提出了一种基于Triplet Network的机械设备典型部件(轴承、齿轮)故障诊断方法。首先,利用短时傅里叶变换,将原始时序信号转换为时频信号;然后... 针对小样本条件下,深度神经网络在机械设备典型部件中(轴承、齿轮)故障诊断精度不高这一问题,提出了一种基于Triplet Network的机械设备典型部件(轴承、齿轮)故障诊断方法。首先,利用短时傅里叶变换,将原始时序信号转换为时频信号;然后,采用了基于Triplet Network搭建的模型,从时频信号中提取了同一故障和不同故障样本的特征,通过对比相同故障和不同故障样本特征的相似度,对模型参数进行了优化,达到了提取的同一故障样本特征相似度越来越高,不同故障样本特征相似度越来越低的效果;最后,通过比较未知样本与已知故障样本的特征相似度,实现了对机械设备典型部件(轴承、齿轮)的故障识别,并采用江南大学轴承故障数据集和康涅狄格大学齿轮故障数据集,对该故障诊断方法的有效性进行了实验验证。研究结果表明:基于Triplet Network的方法在每类训练样本只有5个的情况下,轴承故障识别率可以达到68%,齿轮故障识别率为96.8%,均优于传统的深度神经网络方法。 展开更多
关键词 齿轮故障诊断 滚动轴承故障诊断 深度神经网络 特征相似度 故障识别率 时频信号 小样本
在线阅读 下载PDF
改进条件对抗网络在小样本故障诊断中的研究 被引量:4
2
作者 谢由生 张军 《机械科学与技术》 CSCD 北大核心 2023年第11期1904-1911,共8页
在实际智能设备的故障诊断中,往往很难获得大量的故障样本,这对基于机器学习的故障诊断的分类精度造成不可估量的影响。为了提高小样本情况下的故障诊断精度,提出一种基于条件对抗网络的生成模型(Conditional generative adversarial ne... 在实际智能设备的故障诊断中,往往很难获得大量的故障样本,这对基于机器学习的故障诊断的分类精度造成不可估量的影响。为了提高小样本情况下的故障诊断精度,提出一种基于条件对抗网络的生成模型(Conditional generative adversarial networks-gradient penalty,CGAN-GP),用于数据增强来获得充足的故障样本。CGAN-GP利用二维卷积,学习预处理后获得的二维故障样本的分布特性,生成与真实样本相似的样本,并使用Wasserstein距离和梯度惩罚(Gradient penalty,GP)策略解决模型训练中的问题,同时将故障样本的标签信息输入模型引导模型生成特定的故障样本,实现一个模型可生成多种故障样本,并且在CWRU轴承数据集上得以验证。研究表明提出的模型可以生成与真实样本特征相似的高质量样本,能够有效提高小样本情况下故障诊断的识别率。 展开更多
关键词 故障诊断 生成对抗网络 小样本 梯度惩罚
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部