This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high di...This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high dimensionality and noise disturbance arising from the abnormal record approach under microscopy, the separated surface curvature voxels are ex- tracted as primitive features to represent the original 3D pollen particles, which can also greatly reduce the computation time for later feature extraction process. Due to the good invariance to pollen rotation and scaling transformation, the spatial geometric constraints vectors are calculated to describe the spatial position correlations of the curvature voxels on the 3D curvature mesh graph. For exact similarity evaluation purpose, the bidirectional histogram algorithm is applied to the spatial geometric constraints vectors to obtain the statistical histogram descriptors with fixed dimensionality, which is invariant to the number and the starting position of the curvature voxels. Our experimental results compared with the traditional methods validate the argument that the presented descriptors are invariant to different pollen particles geometric transformations (such as posing change and spatial rotation), and high recognition precision and speed can be obtained simultaneously.展开更多
This paper presents a new method for extract three-dimensional (3D) discrete spherical Fourier descriptors based on surface curvature voxels for pollen particle recognition. In order to reduce the high amount of pol...This paper presents a new method for extract three-dimensional (3D) discrete spherical Fourier descriptors based on surface curvature voxels for pollen particle recognition. In order to reduce the high amount of pollen information and noise disturbance, the geometric normalized curvature voxels with the principal curvedness are first extracted to represent the intrinsic pollen volumetric data. Then the curvature voxels are decomposed into radial and angular components with spherical harmonic transform in spherical coordinates. Finally the 3D discrete Fourier transform is applied to the decomposed curvature voxels to obtain the 3D spherical Fourier descriptors for pollen recognition. Experimental results show that the presented descriptors are invariant to different pollen particle geometric transformations, such as pose change and spatial rotation, and can obtain high recognition accuracy and speed simultaneously.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61375030)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20090149)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.08KJD520019)
文摘This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high dimensionality and noise disturbance arising from the abnormal record approach under microscopy, the separated surface curvature voxels are ex- tracted as primitive features to represent the original 3D pollen particles, which can also greatly reduce the computation time for later feature extraction process. Due to the good invariance to pollen rotation and scaling transformation, the spatial geometric constraints vectors are calculated to describe the spatial position correlations of the curvature voxels on the 3D curvature mesh graph. For exact similarity evaluation purpose, the bidirectional histogram algorithm is applied to the spatial geometric constraints vectors to obtain the statistical histogram descriptors with fixed dimensionality, which is invariant to the number and the starting position of the curvature voxels. Our experimental results compared with the traditional methods validate the argument that the presented descriptors are invariant to different pollen particles geometric transformations (such as posing change and spatial rotation), and high recognition precision and speed can be obtained simultaneously.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60472061)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK20090149)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China (Grant No. 08KJD520019).
文摘This paper presents a new method for extract three-dimensional (3D) discrete spherical Fourier descriptors based on surface curvature voxels for pollen particle recognition. In order to reduce the high amount of pollen information and noise disturbance, the geometric normalized curvature voxels with the principal curvedness are first extracted to represent the intrinsic pollen volumetric data. Then the curvature voxels are decomposed into radial and angular components with spherical harmonic transform in spherical coordinates. Finally the 3D discrete Fourier transform is applied to the decomposed curvature voxels to obtain the 3D spherical Fourier descriptors for pollen recognition. Experimental results show that the presented descriptors are invariant to different pollen particle geometric transformations, such as pose change and spatial rotation, and can obtain high recognition accuracy and speed simultaneously.