期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进RetinaNet的高铁无砟轨道板表面裂缝检测 被引量:4
1
作者 张诗慧 罗晖 +2 位作者 裴莹玲 余俊英 徐杰 《计算机工程与应用》 CSCD 北大核心 2023年第6期310-317,共8页
针对高铁无砟轨道板表面裂缝尺度差异大、裂缝类别不平衡等问题,提出了基于改进RetinaNet的裂缝检测方法。为了缓解下采样与特征金字塔横向连接压缩而导致的细微信息丢失的问题,利用多级特征金字塔融合ResNet-50主干网络中提取的不同层... 针对高铁无砟轨道板表面裂缝尺度差异大、裂缝类别不平衡等问题,提出了基于改进RetinaNet的裂缝检测方法。为了缓解下采样与特征金字塔横向连接压缩而导致的细微信息丢失的问题,利用多级特征金字塔融合ResNet-50主干网络中提取的不同层次的深浅特征,实现了图像特征信息的充分表达;为了解决检测过程中表面裂缝的分类和定位置信度之间不匹配的问题,提出自适应锚点学习使锚点与网络模型同时进行优化,提高了对小尺度裂缝的检测精度;为了缓解裂缝类别不平衡对检测性能的影响,引入焦点损失函数(Focal Loss)作为分类损失函数,并在其中添加类平衡权重项因子,提升了对小类别裂缝的检测精度。实验结果表明,改进RetinaNet检测网络对高铁无砟轨道板不同类别的裂缝均获得了较好的效果,平均检测精度(mAP)达到72.58%,较之原始RetinaNet检测网络提高了3.60个百分点,有效实现了对不同尺度裂缝的准确检测。 展开更多
关键词 目标检测 高铁无砟轨道板 裂缝检测 RetinaNet 多级特征金字塔 锚点 Focal Loss
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部