实体关系抽取任务是信息抽取的核心任务,它对于有效地从爆炸性增长的数据中提取出关键性的信息有着不可替代的作用,也是构建大规模知识图谱的基础任务,因此研究实体关系抽取对各种自然语言处理任务具有重要意义。尽管现有的基于深度学...实体关系抽取任务是信息抽取的核心任务,它对于有效地从爆炸性增长的数据中提取出关键性的信息有着不可替代的作用,也是构建大规模知识图谱的基础任务,因此研究实体关系抽取对各种自然语言处理任务具有重要意义。尽管现有的基于深度学习方法的实体关系抽取已经有了很成熟的理论和较好的性能,但依然还存在着误差累积、实体冗余、交互缺失、三元组重叠等问题。语义信息和句法信息对自然语言处理任务都具有重要作用,为了充分利用这些信息以解决上述提到的问题,提出了一种融合语义和句法图神经网络的二元标记实体关系联合抽取模型FSSRel(Fusion of Semantic and Syntactic Graph Convolutional Networks Binary Tagging Framework for Relation triple extraction)。该模型分为三个阶段进行:第一阶段,对三元组主体的开始结束位置进行预测标记;第二阶段,分别通过语义图神经网络和句法图神经网络提取语义特征和句法特征,并将其融合进编码向量;第三阶段,对语句的每种关系的客体位置进行预测标记,完成最终三元组的提取。实验结果表明,在NYT数据集和WebNLG数据集上,该模型的F1值较基线模型分别提升了2.5%和1.6%,并且在拥有重叠三元组和多三元组等问题的复杂数据上也有良好的表现。展开更多
为提升多维时序数据异常检测的准确率,考虑到异常类型的多样性,提出一种基于变分自编码器(variational autoencoder,VAE)与局部上下文信息自提取的异常检测模型AusVAE-CL(anomaly union score computed by VAE with CNN and LSTM)。利用...为提升多维时序数据异常检测的准确率,考虑到异常类型的多样性,提出一种基于变分自编码器(variational autoencoder,VAE)与局部上下文信息自提取的异常检测模型AusVAE-CL(anomaly union score computed by VAE with CNN and LSTM)。利用CNN(convolutional neural networks)提取每个时间点的局部上下文信息处理上下文异常;使用LSTM(long short-term memory)作为VAE的前馈神经网络捕获多维时序数据中的时间依赖信息处理集体异常;通过全连接层融合时间依赖信息和局部上下文信息拟合VAE的近似后验分布对正常模式下的系统行为建模,提升正样本表示学习的质量;引入重构误差与相对熵加权和的异常评分方法判定异常。实验结果表明,AusVAE-CL模型的召回率和F1值较经典时序异常检测方法均有所提升。展开更多
文摘实体关系抽取任务是信息抽取的核心任务,它对于有效地从爆炸性增长的数据中提取出关键性的信息有着不可替代的作用,也是构建大规模知识图谱的基础任务,因此研究实体关系抽取对各种自然语言处理任务具有重要意义。尽管现有的基于深度学习方法的实体关系抽取已经有了很成熟的理论和较好的性能,但依然还存在着误差累积、实体冗余、交互缺失、三元组重叠等问题。语义信息和句法信息对自然语言处理任务都具有重要作用,为了充分利用这些信息以解决上述提到的问题,提出了一种融合语义和句法图神经网络的二元标记实体关系联合抽取模型FSSRel(Fusion of Semantic and Syntactic Graph Convolutional Networks Binary Tagging Framework for Relation triple extraction)。该模型分为三个阶段进行:第一阶段,对三元组主体的开始结束位置进行预测标记;第二阶段,分别通过语义图神经网络和句法图神经网络提取语义特征和句法特征,并将其融合进编码向量;第三阶段,对语句的每种关系的客体位置进行预测标记,完成最终三元组的提取。实验结果表明,在NYT数据集和WebNLG数据集上,该模型的F1值较基线模型分别提升了2.5%和1.6%,并且在拥有重叠三元组和多三元组等问题的复杂数据上也有良好的表现。
文摘为提升多维时序数据异常检测的准确率,考虑到异常类型的多样性,提出一种基于变分自编码器(variational autoencoder,VAE)与局部上下文信息自提取的异常检测模型AusVAE-CL(anomaly union score computed by VAE with CNN and LSTM)。利用CNN(convolutional neural networks)提取每个时间点的局部上下文信息处理上下文异常;使用LSTM(long short-term memory)作为VAE的前馈神经网络捕获多维时序数据中的时间依赖信息处理集体异常;通过全连接层融合时间依赖信息和局部上下文信息拟合VAE的近似后验分布对正常模式下的系统行为建模,提升正样本表示学习的质量;引入重构误差与相对熵加权和的异常评分方法判定异常。实验结果表明,AusVAE-CL模型的召回率和F1值较经典时序异常检测方法均有所提升。