期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
弹性地基上转动FGM梁自由振动的DTM分析 被引量:6
1
作者 滕兆春 衡亚洲 +1 位作者 张会凯 马永斌 《计算力学学报》 CSCD 北大核心 2017年第6期712-717,共6页
基于Euler-Bernoulli梁理论,利用广义Hamilton原理推导得到弹性地基上转动功能梯度材料(FGM)梁横向自由振动的运动控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了弹性地基上转动FGM... 基于Euler-Bernoulli梁理论,利用广义Hamilton原理推导得到弹性地基上转动功能梯度材料(FGM)梁横向自由振动的运动控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了弹性地基上转动FGM梁在夹紧-夹紧、夹紧-简支和夹紧-自由三种边界条件下横向自由振动的无量纲固有频率,再将控制微分方程退化到无转动和地基时的FGM梁,计算其不同梯度指数时第一阶无量纲固有频率值,并和已有文献的FEM和Lagrange乘子法计算结果进行比较,数值完全吻合。计算结果表明,三种边界条件下FGM梁的无量纲固有频率随无量纲转速和无量纲弹性地基模量的增大而增大;在一定无量纲转速和无量纲弹性地基模量下,FGM梁的无量纲固有频率随着FGM梯度指数的增大而减小;但在夹紧-简支和夹紧-自由边界条件下,一阶无量纲固有频率几乎不变。 展开更多
关键词 弹性地基 转动FGM梁 无量纲固有频率 广义Hamilton原理 微分变换法(DTM)
在线阅读 下载PDF
非均匀Winkler弹性地基上变厚度矩形板自由振动的DTM求解 被引量:7
2
作者 滕兆春 衡亚洲 刘露 《计算力学学报》 EI CAS CSCD 北大核心 2018年第2期216-223,共8页
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将... 针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。 展开更多
关键词 非均匀Winkler弹性地基 变厚度矩形板 自由振动 无量纲固有频率 微分变换法(DTM)
在线阅读 下载PDF
弹性地基上受压矩形纳米板的自由振动与屈曲特性 被引量:6
3
作者 滕兆春 刘露 衡亚洲 《振动与冲击》 EI CSCD 北大核心 2019年第16期208-216,232,共10页
基于Eringen非局部弹性理论和经典薄板理论,利用Hamilton原理推导Winkler-Pasternak弹性地基上面内受压正交各向异性矩形纳米板自由振动的控制微分方程并进行无量纲化。采用一种半解析方法—微分变换法(DTM)将无量纲控制微分方程及边界... 基于Eringen非局部弹性理论和经典薄板理论,利用Hamilton原理推导Winkler-Pasternak弹性地基上面内受压正交各向异性矩形纳米板自由振动的控制微分方程并进行无量纲化。采用一种半解析方法—微分变换法(DTM)将无量纲控制微分方程及边界条件变换为等价的代数方程,得到含有无量纲固有频率和屈曲载荷的特征方程。数值给出了不同边界条件下无量纲地基刚度系数、压力强度、载荷参数、长宽比和纳米尺度对正交各向异性矩形纳米板无量纲固有频率的影响以及不同无量纲地基刚度系数、载荷参数和纳米尺度下的屈曲临界载荷值。结果表明:正交各向异性矩形纳米板的无量纲固有频率随无量纲地基刚度系数、载荷参数和长宽比的增大而增大,随纳米尺度的增大而趋向减小;屈曲临界载荷也随无量纲地基刚度系数的增大而增大,随纳米尺度的增大而减小。 展开更多
关键词 Eringen非局部弹性理论 Winkler-Pasternak弹性地基 无量纲固有频率 屈曲临界载荷 微分变换法(DTM)
在线阅读 下载PDF
变刚度Winkler地基上受压非均质矩形板的自由振动与屈曲特性 被引量:6
4
作者 滕兆春 衡亚洲 +1 位作者 崔盼 刘露 《振动与冲击》 EI CSCD 北大核心 2019年第3期258-266,共9页
基于经典薄板理论,利用Hamilton原理建立变刚度Winkler地基上受压非均质矩形板自由振动与屈曲问题的控制微分方程并进行无量纲化。通过一种半解析方法-微分变换法(DTM)研究其无量纲固有频率和屈曲临界载荷特性。采用DTM将其无量纲控制... 基于经典薄板理论,利用Hamilton原理建立变刚度Winkler地基上受压非均质矩形板自由振动与屈曲问题的控制微分方程并进行无量纲化。通过一种半解析方法-微分变换法(DTM)研究其无量纲固有频率和屈曲临界载荷特性。采用DTM将其无量纲控制微分方程及边界条件变换为等价的代数方程,得到含有频率和屈曲载荷的特征方程。将该问题退化为面内变刚度矩形板情形,其DTM解与精确解进行对比,结果表明DTM具有非常高的精度和很强的适用性。计算出在不同边界条件下屈曲临界载荷并分析地基刚度变化参数、弹性模量变化参数、密度变化参数、面内载荷和长宽比对矩形板无量纲固有频率的影响,给出了不同边界条件下变刚度Winkler地基上受压非均质矩形板的前三阶振型。 展开更多
关键词 变刚度Winkler地基 受压非均质矩形板 自由振动 屈曲 微分变换法(DTM)
在线阅读 下载PDF
非均匀Winkler-Pasternak弹性地基上正交各向异性矩形板自由振动的DTM分析 被引量:4
5
作者 滕兆春 刘露 衡亚洲 《兰州理工大学学报》 CAS 北大核心 2018年第3期166-172,共7页
基于经典薄板理论和力的平衡关系,建立非均匀Winkler-Pasternak弹性地基上正交各向异性矩形板自由振动的控制微分方程并进行无量纲化.采用微分变换法(DTM)将无量纲控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频... 基于经典薄板理论和力的平衡关系,建立非均匀Winkler-Pasternak弹性地基上正交各向异性矩形板自由振动的控制微分方程并进行无量纲化.采用微分变换法(DTM)将无量纲控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程,数值研究4种不同边界正交各向异性矩形板自由振动前四阶无量纲固有频率特性.其数值结果退化为无地基正交各向异性矩形板、均匀Winkler弹性地基正交各向异性矩形板和均匀Winkler-Pasternak弹性地基正交各向异性矩形板情形,并与已有的精确解和级数解进行对比,表明DTM具有非常高的精度和很强的适用性.分析不同边界条件下地基变化参数和矩形板长宽比对正交各向异性矩形板自振频率的影响,并给出了Winkler-Pasternak弹性地基上对边固定对边简支正交各向异性矩形板的前四阶振型. 展开更多
关键词 非均匀Winkler-Pasternak弹性地基 正交各向异性矩形板 自由振动 无量纲固有频率 微分变换法(DTM)
在线阅读 下载PDF
Winkler-Pasternak弹性地基上变截面纳米梁在温度影响下的自由振动分析 被引量:1
6
作者 滕兆春 刘露 衡亚洲 《兰州理工大学学报》 CAS 北大核心 2019年第5期164-169,共6页
基于Euler-Bernoulli梁理论和Eringen非局部弹性理论推导得到Winkler-Pasternak弹性地基上变截面纳米梁在温度影响下自由振动问题的控制微分方程,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了 Winkler-Pasterna... 基于Euler-Bernoulli梁理论和Eringen非局部弹性理论推导得到Winkler-Pasternak弹性地基上变截面纳米梁在温度影响下自由振动问题的控制微分方程,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了 Winkler-Pasternak弹性地基上变截面纳米梁在温度影响下和两端夹紧-夹紧、夹紧-简支以及简支-简支三种边界条件下横向自由振动的无量纲固有频率.再将控制微分方程退化到无温度变化和无弹性地基的等厚度纳米梁,给出了简支-简支边界条件下其自由振动的前4阶无量纲固有频率,并将得到的结果与已有文献的结果进行了比较,验证了 DTM对求解该问题的有效性.结果表明:在保持其它参数不变的情况下,纳米梁的无量纲频率随无量纲地基参数的增大而增大,随截面变化系数和无量纲升温的增大而减小. 展开更多
关键词 Winkler-Pasternak弹性地基 温度 变截面纳米梁 无量纲固有频率 微分变换法(DTM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部