期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高频信息物体多层多元特征权重自适应融合三维重建网络
1
作者 王标 李影 +3 位作者 融百川 刘璟 张进 王永红 《光学精密工程》 北大核心 2025年第15期2424-2440,共17页
为解决光度立体深度学习在实现物体表面法向量重建过程中存在的表面纹理的高频信息丢失而导致重建精度偏差大的问题,提出了一种多层多元特征权重自适应融合三维重建网络(MMF-Net)。网络主要将PS-FCN作为基准模型,引入对称式编码-解码结... 为解决光度立体深度学习在实现物体表面法向量重建过程中存在的表面纹理的高频信息丢失而导致重建精度偏差大的问题,提出了一种多层多元特征权重自适应融合三维重建网络(MMF-Net)。网络主要将PS-FCN作为基准模型,引入对称式编码-解码结构,增强网络的学习和特征表达能力,提升了不同层级之间特征整合能力;设计独立层间权重自适应调节的多元卷积层,通过增加额外的可训练权重,兼顾具有形状信息与纹理信息,并且能够更好地捕捉到表面纹理的细节变化信息,使得该网络在高频信息较密集场景下的表现更加稳定和准确;辅助增加跳跃连接结构,通过中间层特征跨层连接至后续层级,保留物体高频信息且强化低频信息,以实现物体高低频特征信息的融合性应用。利用DiLiGenT基准数据集进行了相关测试,实验结果表明,MMF-Net能够实现平均MAE达到6.94°,对比PS-FCN(Norm)的7.39°提升了6%,在其中两幅含有高频信息物体的平均重建误差为11.03°,对比先前方法FUPS-Net的12.52°提升了12%。MMF-Net实现了光度立体物体表面低频信息和高频信息的有效性获取,为以物体表面法向量为基础的三维高精度重建提供参考。 展开更多
关键词 深度学习 光度立体视觉 多元卷积 特征融合 自适应权重
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部