In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon tech...In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.展开更多
A dimensional artifact is developed, which is a chromium (Cr) deposition grating fabricated by a laser-focused atomic deposition technique. The mean pitch of the grating is measured by using a metrological atomic fo...A dimensional artifact is developed, which is a chromium (Cr) deposition grating fabricated by a laser-focused atomic deposition technique. The mean pitch of the grating is measured by using a metrological atomic force microscope with a large range, where a series of reference signs have been performed to locate the deposition area. Cosine error of the measurement result is analyzed and eliminated by the iterative angle calibration. The measurement result shows that the mean pitch of the grating is 212.66 ±0.02nm, which is very close to half of the standing laser wavelength (λ = 425.55 nm). This means that the grating has traceability with high accuracy and can substitute the laser interference technology for instrument calibration. Moreover, using the Cr deposition grating as a nano standard can shorten the traceability chain and improve the practical application.展开更多
基金supported by the Nano Special Projects of Shanghai Science and Technology Commission of China(Grant No.11nm0560800)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11104284)
文摘In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.
基金Supported by the Nano Special Projects of Shanghai Science and Technology Commission under Grant No 11nm0560800, and the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos 11104284 and 61107077.
文摘A dimensional artifact is developed, which is a chromium (Cr) deposition grating fabricated by a laser-focused atomic deposition technique. The mean pitch of the grating is measured by using a metrological atomic force microscope with a large range, where a series of reference signs have been performed to locate the deposition area. Cosine error of the measurement result is analyzed and eliminated by the iterative angle calibration. The measurement result shows that the mean pitch of the grating is 212.66 ±0.02nm, which is very close to half of the standing laser wavelength (λ = 425.55 nm). This means that the grating has traceability with high accuracy and can substitute the laser interference technology for instrument calibration. Moreover, using the Cr deposition grating as a nano standard can shorten the traceability chain and improve the practical application.