期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
本地差分隐私下的高维数据发布方法 被引量:2
1
作者 蔡梦男 沈国华 +1 位作者 黄志球 杨阳 《计算机科学》 CSCD 北大核心 2024年第2期322-332,共11页
从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一... 从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一组带噪声的低维边缘分布,然后使用它们近似输入数据集的联合分布以生成合成数据集。然而,现有方法在计算大量属性对的边缘分布构建概率图模型,以及计算概率图模型中规模较大的属性子集的联合分布时存在局限性。基于此,提出了一种本地差分隐私下的高维数据发布方法PrivHDP(High-dimensional Data Publication Under Local Differential Privacy)。首先,该方法使用随机采样响应代替传统的隐私预算分割策略扰动用户数据,提出自适应边缘分布计算方法计算成对属性的边缘分布构建Markov网。其次,使用新的方法代替互信息度量成对属性间的相关性,引入了基于高通滤波的阈值过滤技术缩减概率图构建过程的搜索空间,结合充分三角化操作和联合树算法获得一组属性子集。最后,基于联合分布分解和冗余消除,计算属性子集上的联合分布。在4个真实数据集上进行实验,结果表明,PrivHDP算法在k-way查询和SVM分类精度方面优于同类算法,验证了所提方法的可用性与高效性。 展开更多
关键词 本地差分隐私 高维数据 数据发布 边缘分布 联合分布
在线阅读 下载PDF
一种结合代码片段和混合主题模型的软件数据聚类方法 被引量:2
2
作者 魏林林 沈国华 +2 位作者 黄志球 蔡梦男 郭菲菲 《计算机科学》 CSCD 北大核心 2024年第6期44-51,共8页
使用主题模型进行文档聚类是众多文本挖掘任务中一种常见的做法。许多研究针对软件问答网站的数据,利用主题模型进行聚类来分析不同领域在社区的发展情况。然而,这些软件相关数据往往包含代码片段且文本长度分布不均,使用传统单一的主... 使用主题模型进行文档聚类是众多文本挖掘任务中一种常见的做法。许多研究针对软件问答网站的数据,利用主题模型进行聚类来分析不同领域在社区的发展情况。然而,这些软件相关数据往往包含代码片段且文本长度分布不均,使用传统单一的主题模型对文本数据建模,易得到不稳定的聚类结果。文中提出了一种结合代码片段和混合主题模型的聚类方法,并使用Stack Overflow作为数据源,构造了在该平台上被提问数量排名前60的Python第三方库数据集,经过建模,该数据集最终划分为以下6个不同的领域:网络安全、数据分析、人工智能、文本处理、软件开发和系统终端。实验结果表明,在自动评估和人工评估的指标上,使用代码片段结合文本进行主题建模,在聚类结果划分的质量上表现良好,而联合多个模型进行实验,一定程度上提高了聚类结果的稳定性和准确性。 展开更多
关键词 代码片段 主题模型 Stack Overflow PYTHON 聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部