期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于word embedding和CNN的情感分类模型
被引量:
20
1
作者
蔡慧苹
王丽丹
段书凯
《计算机应用研究》
CSCD
北大核心
2016年第10期2902-2905,2909,共5页
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用skip-gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入,此外每次迭代训...
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用skip-gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入,此外每次迭代训练过程中,输入特征也作为参数进行更新;其次,设计了一种具有三种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功地将分类正确率提升了5.04%。
展开更多
关键词
卷积神经网络
自然语言处理
深度学习
词嵌入
情感分类
在线阅读
下载PDF
职称材料
题名
基于word embedding和CNN的情感分类模型
被引量:
20
1
作者
蔡慧苹
王丽丹
段书凯
机构
西南大学电子信息工程学院
出处
《计算机应用研究》
CSCD
北大核心
2016年第10期2902-2905,2909,共5页
基金
国家自然科学基金资助项目(61372139)
国家教育部"春晖计划"科研资助项目(z2011148)
文摘
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用skip-gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入,此外每次迭代训练过程中,输入特征也作为参数进行更新;其次,设计了一种具有三种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功地将分类正确率提升了5.04%。
关键词
卷积神经网络
自然语言处理
深度学习
词嵌入
情感分类
Keywords
convolutional neural network
natural language processing( NLP)
deep learning
word embedding
sentiment classification
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于word embedding和CNN的情感分类模型
蔡慧苹
王丽丹
段书凯
《计算机应用研究》
CSCD
北大核心
2016
20
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部