期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征提取增强和金字塔结构的实时Transformer小目标检测模型
1
作者 张伟 蔡宇帆 +1 位作者 叶林涛 刘大志 《计算机科学》 北大核心 2025年第S2期363-373,共11页
针对室外环境下小目标检测,如复杂背景、光照不足、目标密集和遮挡严重等挑战,提出了一种基于实时检测Transformer改进的模型LDSD-DETR,用于增强复杂背景下的特征提取及小目标检测能力。为提高特征提取效率,池化层和下采样部分采用线性... 针对室外环境下小目标检测,如复杂背景、光照不足、目标密集和遮挡严重等挑战,提出了一种基于实时检测Transformer改进的模型LDSD-DETR,用于增强复杂背景下的特征提取及小目标检测能力。为提高特征提取效率,池化层和下采样部分采用线性可变形卷积(LDConv)进行改进,能更有效地提取特征,在基于注意力的尺度内特征交互部分引入可变形注意力机制,优化目标相关区域的特征捕捉。针对小目标检测,在跨尺度特征融合部分设计了小目标增强金字塔,增强了对小尺寸目标的敏感度。为了进一步提升性能,重构后的结构结合了DGCST模块,有效捕获图像的局部和全局特征。实验结果表明,LDSD-DETR在Roboflow100及其扩展数据集上的平均检测精度优于其他测试模型,相比原模型,各指标均有效提升,其中mAP50提升至90%,提高了1.8个百分点。此外,模型在计算量、参数量及权重文件大小方面均有所优化,为小目标的实时检测提供了更精确、高效的解决方案。 展开更多
关键词 目标检测 小目标 RT-DETR 特征提取 金字塔结构 TRANSFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部