期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征提取增强和金字塔结构的实时Transformer小目标检测模型
1
作者
张伟
蔡宇帆
+1 位作者
叶林涛
刘大志
《计算机科学》
北大核心
2025年第S2期363-373,共11页
针对室外环境下小目标检测,如复杂背景、光照不足、目标密集和遮挡严重等挑战,提出了一种基于实时检测Transformer改进的模型LDSD-DETR,用于增强复杂背景下的特征提取及小目标检测能力。为提高特征提取效率,池化层和下采样部分采用线性...
针对室外环境下小目标检测,如复杂背景、光照不足、目标密集和遮挡严重等挑战,提出了一种基于实时检测Transformer改进的模型LDSD-DETR,用于增强复杂背景下的特征提取及小目标检测能力。为提高特征提取效率,池化层和下采样部分采用线性可变形卷积(LDConv)进行改进,能更有效地提取特征,在基于注意力的尺度内特征交互部分引入可变形注意力机制,优化目标相关区域的特征捕捉。针对小目标检测,在跨尺度特征融合部分设计了小目标增强金字塔,增强了对小尺寸目标的敏感度。为了进一步提升性能,重构后的结构结合了DGCST模块,有效捕获图像的局部和全局特征。实验结果表明,LDSD-DETR在Roboflow100及其扩展数据集上的平均检测精度优于其他测试模型,相比原模型,各指标均有效提升,其中mAP50提升至90%,提高了1.8个百分点。此外,模型在计算量、参数量及权重文件大小方面均有所优化,为小目标的实时检测提供了更精确、高效的解决方案。
展开更多
关键词
目标检测
小目标
RT-DETR
特征提取
金字塔结构
TRANSFORMER
在线阅读
下载PDF
职称材料
题名
基于特征提取增强和金字塔结构的实时Transformer小目标检测模型
1
作者
张伟
蔡宇帆
叶林涛
刘大志
机构
湖北大学人工智能学院
智能感知系统与安全教育部重点实验室
智慧政务与人工智能应用湖北省工程研究中心
出处
《计算机科学》
北大核心
2025年第S2期363-373,共11页
基金
国家自然科学基金(62273135)。
文摘
针对室外环境下小目标检测,如复杂背景、光照不足、目标密集和遮挡严重等挑战,提出了一种基于实时检测Transformer改进的模型LDSD-DETR,用于增强复杂背景下的特征提取及小目标检测能力。为提高特征提取效率,池化层和下采样部分采用线性可变形卷积(LDConv)进行改进,能更有效地提取特征,在基于注意力的尺度内特征交互部分引入可变形注意力机制,优化目标相关区域的特征捕捉。针对小目标检测,在跨尺度特征融合部分设计了小目标增强金字塔,增强了对小尺寸目标的敏感度。为了进一步提升性能,重构后的结构结合了DGCST模块,有效捕获图像的局部和全局特征。实验结果表明,LDSD-DETR在Roboflow100及其扩展数据集上的平均检测精度优于其他测试模型,相比原模型,各指标均有效提升,其中mAP50提升至90%,提高了1.8个百分点。此外,模型在计算量、参数量及权重文件大小方面均有所优化,为小目标的实时检测提供了更精确、高效的解决方案。
关键词
目标检测
小目标
RT-DETR
特征提取
金字塔结构
TRANSFORMER
Keywords
Object detection
Small target
RT-DETR
Feature extraction
Pyramid structure
Transformer
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征提取增强和金字塔结构的实时Transformer小目标检测模型
张伟
蔡宇帆
叶林涛
刘大志
《计算机科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部