期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bagging异构集成的代码异味检测与重构优先级划分
1
作者 吴海涛 蔡咏琦 高建华 《计算机工程与应用》 CSCD 北大核心 2024年第3期138-147,共10页
代码异味是不良的设计和代码实现的症状,可能阻碍代码理解、增加代码更改和出错的可能性。以前的研究专注于单一模型在代码异味上的检测,并且无法为开发人员提供重构建议。针对上述问题,提出一种基于Bagging异构集成模型的代码异味检测... 代码异味是不良的设计和代码实现的症状,可能阻碍代码理解、增加代码更改和出错的可能性。以前的研究专注于单一模型在代码异味上的检测,并且无法为开发人员提供重构建议。针对上述问题,提出一种基于Bagging异构集成模型的代码异味检测与重构优先级划分方法,该方法利用分类器间的异质性,通过F1集成策略来检测Complex Class、Long Method、Spaghetti Code等三种代码异味,并将模型输出的异味概率转化为可能性分布后,为开发人员提供重构意见。实验在6个开源系统的32个版本上验证、评估:(1)基分类器的稳定性以及与代码异味的关系;(2)Bagging异构集成模型检测上述代码异味的性能;(3)将异味概率转化为可能性分布并作为重构优先级的有效性。实验结果表明,最佳基分类器因代码异味类型而异。同时,Bagging异构集成模型相较于基分类器,F1提高0.06~40.51个百分点,AUC提高0.45~28.37个百分点。最后将Bagging异构集成模型的重构优先级与6名受访者的重构优先级进行Kappa一致性检验,两者具有高度一致性。 展开更多
关键词 代码异味 机器学习 集成学习 软件重构 可能性分布
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部