Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic ...Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transi- tions of DNA are also experimentally observed in mixing spermidine with X-phage DNA at different concentrations of NaCl/MgCl2 solutions.展开更多
The condensation of DNA induced by spermine is studied by atomic force microscopy (AFM) and molecular dynamics (MD) simulation in this paper. In our experiments, an equivalent amount of multivalent cations is adde...The condensation of DNA induced by spermine is studied by atomic force microscopy (AFM) and molecular dynamics (MD) simulation in this paper. In our experiments, an equivalent amount of multivalent cations is added to the DNA solutions in different numbers of steps, and we find that the process of DNA condensation strongly depends on the speed of adding cations. That is, the slower the spermine cations are added, the slower the DNA aggregates. The MD and steered molecular dynamics (SMD) simulation results agree well with the experimental results, and the simulation data also show that the more steps of adding multivalent cations there are, the more compact the condensed DNA structure will be. This investigation can help us to control DNA condensation and understand the complicated structures of DNA--cation complexes.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31340026)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.Z13F20019 and LQ12E01003)the Science and Technology Project of Zhejiang Science and Technology Department,China(Grant No.2014C31147)
文摘Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transi- tions of DNA are also experimentally observed in mixing spermidine with X-phage DNA at different concentrations of NaCl/MgCl2 solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20974081, 20934004, 21174131, and 21104060)the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y4110357)
文摘The condensation of DNA induced by spermine is studied by atomic force microscopy (AFM) and molecular dynamics (MD) simulation in this paper. In our experiments, an equivalent amount of multivalent cations is added to the DNA solutions in different numbers of steps, and we find that the process of DNA condensation strongly depends on the speed of adding cations. That is, the slower the spermine cations are added, the slower the DNA aggregates. The MD and steered molecular dynamics (SMD) simulation results agree well with the experimental results, and the simulation data also show that the more steps of adding multivalent cations there are, the more compact the condensed DNA structure will be. This investigation can help us to control DNA condensation and understand the complicated structures of DNA--cation complexes.