The Doppler backscattering(DBS)diagnostic is widely used to measure the localized density fluctuations and the propagation velocity of turbulent structures.Microwave is launched at a frequency that approaches a cutoff...The Doppler backscattering(DBS)diagnostic is widely used to measure the localized density fluctuations and the propagation velocity of turbulent structures.Microwave is launched at a frequency that approaches a cutoff layer in the plasma at an angle oblique to the cutoff layer.A new Q-band multichannel DBS system based on a comb generator has been designed and tested for application on the HL-3 tokamak.With the comb generator and heterodyne scheme,the stability and flexibility of the new DBS system are improved.The new DBS diagnostic has a high output power(~10 dBm),good power flatness(<5 dB in Q-band),and frequency stability,and the inter-frequency separation is tunable remotely.This article introduces the system design,laboratory test results,and initial experimental results from the HL-3 tokamak.With the help of the newly developed multichannel DBS,the turbulence information can be studied with high temporal and spatial resolution.展开更多
基金supported by National Natural Science Foundation of China(Nos.12105087,12275096,and 11922503)the Joint Funds of the National Natural Science Foundation of China(No.U21A20440)the Science and Technology Planning Project of Sichuan Province(No.2023YFG0139)。
文摘The Doppler backscattering(DBS)diagnostic is widely used to measure the localized density fluctuations and the propagation velocity of turbulent structures.Microwave is launched at a frequency that approaches a cutoff layer in the plasma at an angle oblique to the cutoff layer.A new Q-band multichannel DBS system based on a comb generator has been designed and tested for application on the HL-3 tokamak.With the comb generator and heterodyne scheme,the stability and flexibility of the new DBS system are improved.The new DBS diagnostic has a high output power(~10 dBm),good power flatness(<5 dB in Q-band),and frequency stability,and the inter-frequency separation is tunable remotely.This article introduces the system design,laboratory test results,and initial experimental results from the HL-3 tokamak.With the help of the newly developed multichannel DBS,the turbulence information can be studied with high temporal and spatial resolution.