期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于连续小波变换耦合CARS算法的冬小麦冠层叶片含水量估算 被引量:8
1
作者 李铠 常庆瑞 +4 位作者 陈倩 陈晓凯 莫海洋 张耀丹 郑智康 《麦类作物学报》 CAS CSCD 北大核心 2023年第2期251-258,共8页
为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析... 为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析;并通过竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)过滤冗余变量,筛选与叶片含水量相关性较好的波长变量,作为优选变量集;通过粒子群算法(particle swarm optimization,PSO)对BP神经网络模型进行优化,构建冠层叶片含水量预测模型并进行分析。结果表明,从尺度1到尺度10,小波系数与冬小麦叶片含水量整体相关性先升后降,中等分解尺度在光谱波段去除噪声、提高相关性方面最佳;基于CARS优选变量集所建的两种模型中,BP-PSO模型预测能力明显优于普通BP神经网络模型,其决定系数可达0.82,均方根误差为0.86%,相对误差为0.82%。这说明CWT-CARS-BP-PSO耦合算法在提升相关性、过滤冗余波段、提高模型预测精度方面效果显著,可用于冬小麦叶片含水量预测。 展开更多
关键词 冬小麦 叶片含水量 高光谱 连续小波变换 竞争适应重加权采样 粒子群算法PSO优化BP神经网络
在线阅读 下载PDF
基于无人机高光谱分数阶微分玉米SPAD值估算 被引量:5
2
作者 郑智康 常庆瑞 +4 位作者 姜时雨 符欣彤 李铠 张子娟 莫海洋 《东北农业大学学报》 CAS CSCD 北大核心 2023年第2期66-74,共9页
以夏玉米为研究对象,基于无人机高光谱数据和野外玉米冠层叶片实测SPAD值,以0.2阶为步长,计算光谱0~2阶分数阶微分,分析其与玉米冠层实测SPAD值之间相关性,筛选相关系数绝对值前10波段为特征波段组合,构建并比较玉米冠层叶片SPAD值的支... 以夏玉米为研究对象,基于无人机高光谱数据和野外玉米冠层叶片实测SPAD值,以0.2阶为步长,计算光谱0~2阶分数阶微分,分析其与玉米冠层实测SPAD值之间相关性,筛选相关系数绝对值前10波段为特征波段组合,构建并比较玉米冠层叶片SPAD值的支持向量回归模型(SVR)、反向传播神经网络模型(BPNN)和麻雀优化算法随机森林模型(SSA-RFR)。结果表明,经分数阶微分变换可显著提高与SPAD值相关性,其中以0.6阶698 nm处相关系数绝对值最大;基于分数阶微分模型整体精度高于整数阶模型,其中基于分数阶微分的SSARFR模型精度最高,R2为0.706,较整数阶提高32.46%,RMSE和MRE分别为2.444和3.579%,较整数阶降低13.46%和12.95%。 展开更多
关键词 玉米 无人机 高光谱 SPAD 分数阶微分 麻雀优化算法 随机森林
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部