Modulation of Schottky barrier height (SBH) is successfully demonstrated by a germanidation-induced dopant segregation technique. The barrier height of NiGe/Ge Schottky diodes is modulated by 0.06-0.15 eV depending ...Modulation of Schottky barrier height (SBH) is successfully demonstrated by a germanidation-induced dopant segregation technique. The barrier height of NiGe/Ge Schottky diodes is modulated by 0.06-0.15 eV depending on annealing temperature. The results show the change of SBH is not attributed to the phase change of nickel germanides but to dopant segregation at the interface of germanides/germanium which causes the upward conduction energy band. In addition, we first observe a Raman peak at about 217cm^-1 corresponding to NiGe, which has not been reported till now. The surface morphology of nickel germanides can be improved by BF2 implantation before germanidation. The results may provide guidelines for the design of Sehottky source/drain germanium-based devices.展开更多
This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface i...This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide- as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 1015 cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 60625403, 60806033 and 90207004, the National Basic Research Program of China under Grant No 2006CB302701, and the New Century Excellent Talent Project (NCET) of the Ministry of Education of China.
文摘Modulation of Schottky barrier height (SBH) is successfully demonstrated by a germanidation-induced dopant segregation technique. The barrier height of NiGe/Ge Schottky diodes is modulated by 0.06-0.15 eV depending on annealing temperature. The results show the change of SBH is not attributed to the phase change of nickel germanides but to dopant segregation at the interface of germanides/germanium which causes the upward conduction energy band. In addition, we first observe a Raman peak at about 217cm^-1 corresponding to NiGe, which has not been reported till now. The surface morphology of nickel germanides can be improved by BF2 implantation before germanidation. The results may provide guidelines for the design of Sehottky source/drain germanium-based devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60625403, 60806033, 90207004)the State Key Development Program for Basic Research of China (Grant No 2006CB302701)the NCET Program
文摘This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide- as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 1015 cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.