期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MOGOA-VMD-LSSVM的轴承故障诊断方法研究
1
作者 张辉 宋泓炎 +3 位作者 范华超 赵连明 江帆 鲁宗虎 《煤炭工程》 北大核心 2025年第2期149-155,共7页
针对煤基活性炭生产设备轴承故障类型难以准确诊断的问题,提出了一种多目标蝗虫优化算法(MOGOA)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的煤基活性炭生产设备轴承故障诊断方法。首先,针对传统蝗虫优化算法(GOA)参数敏感、易... 针对煤基活性炭生产设备轴承故障类型难以准确诊断的问题,提出了一种多目标蝗虫优化算法(MOGOA)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的煤基活性炭生产设备轴承故障诊断方法。首先,针对传统蝗虫优化算法(GOA)参数敏感、易于陷入局部最优的问题,引入多目标蝗虫优化算法,通过引入基于排列熵与峭度倒数归一化的复合适应度函数,优化VMD的惩罚因子和分解层数。其次,使用优化VMD分解提取的轴承振动信号并筛选出敏感变分模态分量(IMF)进行重构。最后,通过MOGOA优化LSSVM模型,形成MOGOA-LSSVM故障诊断模型。与GOA-LSSVM方法对比,本研究所提方法故障诊断准确率提高了5%,运行时间缩短了9.72 s,验证了该方法在故障诊断方面的优势。 展开更多
关键词 煤基活性炭设备 轴承 多目标蝗虫优化算法 VMD LSSVM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部