A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary ...A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.展开更多
Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean ...Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.展开更多
A novel one-dimensional plasma photonic crystal whose crystal orientation can change spontaneously is demonstrated using a dielectric barrier discharge with two liquid electrodes. The orientation of the plasma photoni...A novel one-dimensional plasma photonic crystal whose crystal orientation can change spontaneously is demonstrated using a dielectric barrier discharge with two liquid electrodes. The orientation of the plasma photonic crystal will vary from transverse to longitudinal or vary from longitudinal to transverse and then revert to longitudinal by self-adjustment, while the experimental conditions are kept fixed. The dispersion relation of these plasma photonic crystals are calculated, and the changes of the photonic band diagrams during the orientation transition are studied.展开更多
We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular latt...We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized.Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withθ=π/3 is suggested.An active control on the geometrical shape,size and angular orientation of the plasma elements has been achieved.Moreover,the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera.The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices,demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves.The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.展开更多
The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of t...The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of the time delay on the Turing and Hopf instabilities near the Turing Hopf codimension-two phase space. Numerical simulations show that the transition between the Turing patterns (hexagon, stripe, and honeycomb), the dual-mode antispiral, and the antispiral by applying appropriate feedback parameters. The dual-mode antispiral pattern originates from the competition between the Turing and Hopf instabilities. Our results have shown the flexibility of the time delay on controlling the pattern formations near the Turing-Hopf codimension-two phase space.展开更多
Spatio-temporal distribution of individual filament in a square superlattice pattern, which consists of large and small spots (filaments), is studied in atmospheric dielectric barrier discharges. The spatial distrib...Spatio-temporal distribution of individual filament in a square superlattice pattern, which consists of large and small spots (filaments), is studied in atmospheric dielectric barrier discharges. The spatial distributions of the two discharges for individual large filament along the direction perpendicular to the electrode are estimated by the distributions of light signals along the electrode. It is found that the discharge at the rising edge of the applied voltage is with a wider column, weaker current, and longer current pulse duration in comparison with that at the falling edge展开更多
Plasma photonic crystals(PPCs)are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave.Here we demonstrate several one-dimensional(1 D)PPCs with uniquely ...Plasma photonic crystals(PPCs)are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave.Here we demonstrate several one-dimensional(1 D)PPCs with uniquely designed superlattice structures,annular structures or with incorporation of the third material into the primitive unit cell.The influences of the properties of the third material as well as the structural configurations of suplerlattices on the transmittance characteristics of PPCs have been investigated by use of the finite element method.The optimal design strategy for producing PPCs that have more and larger band gaps is provided.These new schemes can potentially be extended to 2 D or 3 D plasma crystals,which may find broad applications in the manipulation of microwaves and terahertz waves.展开更多
We report five types of patterns with square symmetry,including three novel types obtained by inserting a specially designed grid photonic crystal(PC)into a dielectric barrier discharge system.They are studied using a...We report five types of patterns with square symmetry,including three novel types obtained by inserting a specially designed grid photonic crystal(PC)into a dielectric barrier discharge system.They are studied using an intensified charge-coupled device camera and photomultiplier tubes.The three novel types of patterns are a square pattern with one structure,a square superlattice pattern with four sublattices and a(1/4)K_(grid)(K_(grid)is the basic wave vector of the grid),and another square pattern with a complex inversion discharge sequence.From the application viewpoint,the five types of patterns can be used as plasma photonic crystals(PPCs).Their band diagrams under a transverse-magnetic wave simulated by the finite element method show that there are a large number of band gaps.Compared with the original PC with only a unidirectional band gap,the five types of PPCs have tunable and omnidirectional band gaps,which is very important in controlling the propagation of electromagnetic waves in the mm-wave region.The experimental results enrich the pattern types in the dielectric barrier discharge system and provide a method for obtaining PPCs with symmetry controllability and bandgap tunability.展开更多
The plasma behavior of filamentary barrier discharges in helium is simulated using a twodimensional(2D) particle-in-cell/Monte Carlo model. Four different phases have been suggested in terms of the development of th...The plasma behavior of filamentary barrier discharges in helium is simulated using a twodimensional(2D) particle-in-cell/Monte Carlo model. Four different phases have been suggested in terms of the development of the discharge: the Townsend phase; the space-charge dominated phase; the formation of the cathode layer, and the extinguishing phase. The spatialtemporal evolution of the particle densities, velocities of the charged particles, electric fields, and surface charges has been demonstrated. Our simulation provides insights into the underlying mechanism of the discharge and explains many dynamical behaviors of dielectric barrier discharge(DBD) filaments.展开更多
The nonlinear interaction in the coherent structure in the CT-6B tokamak plasma turbulence is studied by using the wavelet bicoherence technique. The results show that the coherent structure mainly results from the no...The nonlinear interaction in the coherent structure in the CT-6B tokamak plasma turbulence is studied by using the wavelet bicoherence technique. The results show that the coherent structure mainly results from the nonlinear interaction between waves.展开更多
Using a dusty plasma ratchet,one can realize the rectification of charged dust particle in a plasma.To obtain the ratchet potential dominating the rectification,here we perform quantitative simulations based on a two-...Using a dusty plasma ratchet,one can realize the rectification of charged dust particle in a plasma.To obtain the ratchet potential dominating the rectification,here we perform quantitative simulations based on a two-dimensional fluid model of capacitively coupled plasma.Plasma parameters are firstly calculated in two typical cross sections of the dusty plasma ratchet which cut vertically the saw channel at different azimuthal positions.The balance positions of charged dust particle in the two cross sections then can be found exactly.The electric potentials at the two balance positions have different values.Using interpolation in term of a double-sine function from previous experimental measurement,an asymmetrical ratchet potential along the saw channel is finally obtained.The asymmetrical orientation of the ratchet potential depends on discharge conditions.Quantitative simulations further reproduce our previous experimental phenomena such as the rectification of dust particle in the dusty plasma ratchet.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275065,12275064,12475203)the Natural Science Foundation of Hebei Province(Grant Nos.A2021201010 and A2024201020)+3 种基金Interdisciplinary Research Program of Natural Science of Hebei University(Grant No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(Grant No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(Grant No.IT2023B03)the Excellent Youth Research Innovation Team of Hebei University(Grant No.QNTD202402)。
文摘A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.
基金supported by National Natural Science Foundation of China(Nos.12275065 and 11975089)Natural Science Foundation of Hebei Province(Nos.A2021201010 and A2021201003)+4 种基金Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(No.IT2023B03)The Excellent Youth Research Innovation Team of Hebei University(No.QNTD202402)Regional Key Projects of National Natural Science Foundation of China(No.U23A20678).
文摘Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.
基金Project supported by the Natural Science Foundation of Hebei Province, China (Grants No. A2011201010)the Research Foundation of Education Bureauof Hebei Province, China (Grant No. 2010113)
文摘A novel one-dimensional plasma photonic crystal whose crystal orientation can change spontaneously is demonstrated using a dielectric barrier discharge with two liquid electrodes. The orientation of the plasma photonic crystal will vary from transverse to longitudinal or vary from longitudinal to transverse and then revert to longitudinal by self-adjustment, while the experimental conditions are kept fixed. The dispersion relation of these plasma photonic crystals are calculated, and the changes of the photonic band diagrams during the orientation transition are studied.
基金supported by National Natural Science Foundation of China(Nos.11875014,11975089)the Natural Science Foundation of Hebei Province(Nos.A2021201010,A2021201003,and A2017201099)。
文摘We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized.Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withθ=π/3 is suggested.An active control on the geometrical shape,size and angular orientation of the plasma elements has been achieved.Moreover,the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera.The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices,demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves.The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10975043 and 10947166)the Natural Science Foundation of Hebei Province,China (Grant Nos. A2011201006 and A2010000185)the Science Foundation of Hebei University
文摘The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of the time delay on the Turing and Hopf instabilities near the Turing Hopf codimension-two phase space. Numerical simulations show that the transition between the Turing patterns (hexagon, stripe, and honeycomb), the dual-mode antispiral, and the antispiral by applying appropriate feedback parameters. The dual-mode antispiral pattern originates from the competition between the Turing and Hopf instabilities. Our results have shown the flexibility of the time delay on controlling the pattern formations near the Turing-Hopf codimension-two phase space.
基金supported by National Natural Science Foundation of China (No.10775037)Natural Science Foundation of Hebei Province of China (No.A2008000564) Natural Science Foundation of Hebei University 2008Q17, China
文摘Spatio-temporal distribution of individual filament in a square superlattice pattern, which consists of large and small spots (filaments), is studied in atmospheric dielectric barrier discharges. The spatial distributions of the two discharges for individual large filament along the direction perpendicular to the electrode are estimated by the distributions of light signals along the electrode. It is found that the discharge at the rising edge of the applied voltage is with a wider column, weaker current, and longer current pulse duration in comparison with that at the falling edge
基金supported by National Natural Science Foundation of China(No.11875014)the Natural Science Foundation of Hebei Province(A2017201099)。
文摘Plasma photonic crystals(PPCs)are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave.Here we demonstrate several one-dimensional(1 D)PPCs with uniquely designed superlattice structures,annular structures or with incorporation of the third material into the primitive unit cell.The influences of the properties of the third material as well as the structural configurations of suplerlattices on the transmittance characteristics of PPCs have been investigated by use of the finite element method.The optimal design strategy for producing PPCs that have more and larger band gaps is provided.These new schemes can potentially be extended to 2 D or 3 D plasma crystals,which may find broad applications in the manipulation of microwaves and terahertz waves.
基金supported by National Natural Science Foundation of China(No.12075075)the Natural Science Foundation of Hebei Province, China(Nos.2020201016 and A2018201154)。
文摘We report five types of patterns with square symmetry,including three novel types obtained by inserting a specially designed grid photonic crystal(PC)into a dielectric barrier discharge system.They are studied using an intensified charge-coupled device camera and photomultiplier tubes.The three novel types of patterns are a square pattern with one structure,a square superlattice pattern with four sublattices and a(1/4)K_(grid)(K_(grid)is the basic wave vector of the grid),and another square pattern with a complex inversion discharge sequence.From the application viewpoint,the five types of patterns can be used as plasma photonic crystals(PPCs).Their band diagrams under a transverse-magnetic wave simulated by the finite element method show that there are a large number of band gaps.Compared with the original PC with only a unidirectional band gap,the five types of PPCs have tunable and omnidirectional band gaps,which is very important in controlling the propagation of electromagnetic waves in the mm-wave region.The experimental results enrich the pattern types in the dielectric barrier discharge system and provide a method for obtaining PPCs with symmetry controllability and bandgap tunability.
基金sponsored by National Natural Science Foundation of China under Grant Nos.11505044,11405042 and 11421064the Natural Science Foundation of Hebei Province under Grant No.A2016201066+1 种基金the Research Foundation of Education Bureau of Hebei province under Grant No.BJ2016006the Midwest Universities Comprehensive Strength Promotion Project
文摘The plasma behavior of filamentary barrier discharges in helium is simulated using a twodimensional(2D) particle-in-cell/Monte Carlo model. Four different phases have been suggested in terms of the development of the discharge: the Townsend phase; the space-charge dominated phase; the formation of the cathode layer, and the extinguishing phase. The spatialtemporal evolution of the particle densities, velocities of the charged particles, electric fields, and surface charges has been demonstrated. Our simulation provides insights into the underlying mechanism of the discharge and explains many dynamical behaviors of dielectric barrier discharge(DBD) filaments.
基金Supported by the National Natural Science Foundation of China under Grant No 10375015, the Natural Science Foundation of Hebei Province under Grant Nos A2006000950 and A2004000086.
文摘The nonlinear interaction in the coherent structure in the CT-6B tokamak plasma turbulence is studied by using the wavelet bicoherence technique. The results show that the coherent structure mainly results from the nonlinear interaction between waves.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975089 and 11875014)the Interdisciplinary Research Program of Natural Science of Hebei University(Grant No.DXK202010)the Hebei Natural Science Fund(Grant Nos.A2021201003 and A2021201010)。
文摘Using a dusty plasma ratchet,one can realize the rectification of charged dust particle in a plasma.To obtain the ratchet potential dominating the rectification,here we perform quantitative simulations based on a two-dimensional fluid model of capacitively coupled plasma.Plasma parameters are firstly calculated in two typical cross sections of the dusty plasma ratchet which cut vertically the saw channel at different azimuthal positions.The balance positions of charged dust particle in the two cross sections then can be found exactly.The electric potentials at the two balance positions have different values.Using interpolation in term of a double-sine function from previous experimental measurement,an asymmetrical ratchet potential along the saw channel is finally obtained.The asymmetrical orientation of the ratchet potential depends on discharge conditions.Quantitative simulations further reproduce our previous experimental phenomena such as the rectification of dust particle in the dusty plasma ratchet.