吸气式电推进(air-breathing electric propulsion,ABEP)系统使用超低轨道大气作为工质,可突破推进剂携带量对卫星使用寿命的限制瓶颈,是超低轨卫星实现长期驻留的关键技术途径之一.本文采用直接模拟蒙特卡罗(direct simulation Monte C...吸气式电推进(air-breathing electric propulsion,ABEP)系统使用超低轨道大气作为工质,可突破推进剂携带量对卫星使用寿命的限制瓶颈,是超低轨卫星实现长期驻留的关键技术途径之一.本文采用直接模拟蒙特卡罗(direct simulation Monte Carlo,DSMC)计算方法,对二维的ABEP进气道模型进行模拟.设定壁面碰撞模型为完全漫反射,在进气道的进口直径保持定值的前提下,改变进气道的长纵比、出口锥角、栅格长度和栅格层数,以分别探究这些影响因素单一作用下的进气道性能变化规律.在单一影响规律的前提下,利用遗传算法进行多目标优化,得到符合设计要求的高性能进气道设计参数,通过权重分配实现了典型高度下进气道设计中收集效率与压缩比的最优解.本研究对大气收集器产品的工程化应用具有指导意义.展开更多
文摘吸气式电推进(air-breathing electric propulsion,ABEP)系统使用超低轨道大气作为工质,可突破推进剂携带量对卫星使用寿命的限制瓶颈,是超低轨卫星实现长期驻留的关键技术途径之一.本文采用直接模拟蒙特卡罗(direct simulation Monte Carlo,DSMC)计算方法,对二维的ABEP进气道模型进行模拟.设定壁面碰撞模型为完全漫反射,在进气道的进口直径保持定值的前提下,改变进气道的长纵比、出口锥角、栅格长度和栅格层数,以分别探究这些影响因素单一作用下的进气道性能变化规律.在单一影响规律的前提下,利用遗传算法进行多目标优化,得到符合设计要求的高性能进气道设计参数,通过权重分配实现了典型高度下进气道设计中收集效率与压缩比的最优解.本研究对大气收集器产品的工程化应用具有指导意义.