期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的带式输送机非煤异物识别方法 被引量:25
1
作者 胡璟皓 高妍 +1 位作者 张红娟 靳宝全 《工矿自动化》 北大核心 2021年第6期57-62,90,共7页
针对现有非煤异物图像识别法识别目标单一、模型缺乏定位能力等问题,提出一种基于深度学习的带式输送机非煤异物识别方法。该方法以目标检测算法YOLOv3为基础框架,采用Focal Loss函数替换YOLOv3模型中的交叉熵损失函数,对YOLOv3模型进... 针对现有非煤异物图像识别法识别目标单一、模型缺乏定位能力等问题,提出一种基于深度学习的带式输送机非煤异物识别方法。该方法以目标检测算法YOLOv3为基础框架,采用Focal Loss函数替换YOLOv3模型中的交叉熵损失函数,对YOLOv3模型进行改进;通过调节最佳超参数(权重参数α和焦点参数γ)来平衡样本之间的比例,解决非煤异物样本不平衡问题,使模型在训练时更专注学习复杂目标样本特征,提高模型预测性能;搭建了异物数据集,并通过异物数据集对分类性能和速度进行实验。结果表明:Focal Loss函数在异物数据集中表现优于交叉熵损失函数,在γ=2,α=0.75时准确率提升5%,故最佳超参数为γ=2,α=0.75;改进后的YOLOv3模型对锚杆、角铁、螺母3种非煤异物的识别精确率分别提升了约4.7%,3.5%和6.8%,召回率分别提升了约6.6%,3.5%和6.0%;模型在2080Ti平台下每张图像预测类别与实际类别一致,且置信度在94%以上。 展开更多
关键词 带式输送机 非煤异物识别 目标预测 深度学习 YOLOv3 Focal Loss函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部